Scikit-plot 画图神器

2019-06-27  本文已影响0人  顾北向南

本文转载至机器学习初学者(ID:ai-start-com)
作者:黄海广博士

1. 安装说明

2. 使用说明

from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
nb = GaussianNB()
nb.fit(X_train, y_train)
predicted_probas = nb.predict_proba(X_test)
# The magic happens here
import matplotlib.pyplot as plt
import scikitplot as skplt
skplt.metrics.plot_roc(y_test, predicted_probas)
plt.show()
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_digits as load_data
import scikitplot as skplt
# Load dataset
X, y = load_data(return_X_y=True)
# Create classifier instance then fit
nb = GaussianNB()
nb.fit(X,y)
# Get predicted probabilities
y_probas = nb.predict_proba(X)
skplt.metrics.plot_precision_recall_curve(y, y_probas, cmap='nipy_spectral')
plt.show()
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_digits as load_data
from sklearn.model_selection import cross_val_predict
import matplotlib.pyplot as plt
import scikitplot as skplt
X, y = load_data(return_X_y=True)
# Create an instance of the RandomForestClassifier
classifier = RandomForestClassifier()
# Perform predictions
predictions = cross_val_predict(classifier, X, y)
plot = skplt.metrics.plot_confusion_matrix(y, predictions, normalize=True)
plt.show()
上一篇 下一篇

猜你喜欢

热点阅读