object_detectionAPI源码阅读笔记(15-梳理一

2018-10-30  本文已影响116人  yanghedada

主要是回忆SSD源码解析

在稍微熟悉了流程之后重新梳理SSD

特征提取

使用inception_v2进特征提取
inception_v2的特征层shape

onv2d_1a_7x7 :  (3, 112, 112, 256)
MaxPool_2a_3x3 :  (3, 56, 56, 256)
Conv2d_2b_1x1 :  (3, 56, 56, 256)
Conv2d_2c_3x3 :  (3, 56, 56, 256)
MaxPool_3a_3x3 :  (3, 28, 28, 256)
Mixed_3b :  (3, 28, 28, 1024)
Mixed_3c :  (3, 28, 28, 1024)
Mixed_4a :  (3, 14, 14, 1536)
Mixed_4b :  (3, 14, 14, 1024)
Mixed_4c :  (3, 14, 14, 1024)
Mixed_4d :  (3, 14, 14, 1024)
Mixed_4e :  (3, 14, 14, 1024)
Mixed_5a :  (3, 7, 7, 1536)
Mixed_5b :  (3, 7, 7, 1184)
Mixed_5c :  (3, 7, 7, 1184)

在SSD中使用的是final_endpoint='Mixed_5c'

如下:

  def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        33, preprocessed_inputs)

    feature_map_layout = {
        'from_layer': ['Mixed_4c', 'Mixed_5c', '', '', '', ''],
        'layer_depth': [-1, -1, 512, 256, 256, 128],
        'use_explicit_padding': self._use_explicit_padding,
        'use_depthwise': self._use_depthwise,
    }

    with slim.arg_scope(self._conv_hyperparams_fn()):
      with tf.variable_scope('InceptionV2',
                             reuse=self._reuse_weights) as scope:
        _, image_features = inception_v2.inception_v2_base(
            ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
            final_endpoint='Mixed_5c',
            min_depth=self._min_depth,
            depth_multiplier=self._depth_multiplier,
            scope=scope)
        feature_maps = feature_map_generators.multi_resolution_feature_maps(
            feature_map_layout=feature_map_layout,
            depth_multiplier=self._depth_multiplier,
            min_depth=self._min_depth,
            insert_1x1_conv=True,
            image_features=image_features)

    return feature_maps.values()

上面可以看出SSD使用了元inception_v2的'Mixed_4c', 'Mixed_5c'。后面还跟了几个空字符串。

在feature_map_generators_test.py中可以看到,feature_map会根据最后一层的特征图大小自动添加4层,如下:

这里是使用Mixed_3c,Mixed_4c,Mixed_5c,再添加最后三层。

expected_feature_map_shapes = {
        'Mixed_3c': (4, 28, 28, 256),
        'Mixed_4c': (4, 14, 14, 576),
        'Mixed_5c': (4, 7, 7, 1024),
        'Mixed_5c_2_Conv2d_3_3x3_s2_512': (4, 4, 4, 512),
        'Mixed_5c_2_Conv2d_4_3x3_s2_256': (4, 2, 2, 256),
        'Mixed_5c_2_Conv2d_5_3x3_s2_256': (4, 1, 1, 256)}

所以extract_features会返回6个特征层。

拿到featur_map之后需要在feature_map上进行box location 和classes score。

在config文件中,提到使用convolutional_box_predictor 进行预测

box_predictor {
      convolutional_box_predictor {

使用的·还是box_predictot.py中

class ConvolutionalBoxPredictor(BoxPredictor):
def _predict(self, image_features, num_predictions_per_location):
   
    # Add a slot for the background class.
    num_class_slots = self.num_classes + 1
    net = image_features
    with slim.arg_scope(self._conv_hyperparams), \
         slim.arg_scope([slim.dropout], is_training=self._is_training):
      # Add additional conv layers before the class predictor.
      features_depth = static_shape.get_depth(image_features.get_shape())
      depth = max(min(features_depth, self._max_depth), self._min_depth)
      tf.logging.info('depth of additional conv before box predictor: {}'.
                      format(depth))
      if depth > 0 and self._num_layers_before_predictor > 0:
        for i in range(self._num_layers_before_predictor):
          net = slim.conv2d(
              net, depth, [1, 1], scope='Conv2d_%d_1x1_%d' % (i, depth))
      with slim.arg_scope([slim.conv2d], activation_fn=None,
                          normalizer_fn=None, normalizer_params=None):
        box_encodings = slim.conv2d(
            net, num_predictions_per_location * self._box_code_size,
            [self._kernel_size, self._kernel_size],
            scope='BoxEncodingPredictor')
        if self._use_dropout:
          net = slim.dropout(net, keep_prob=self._dropout_keep_prob)
        class_predictions_with_background = slim.conv2d(
            net, num_predictions_per_location * num_class_slots,
            [self._kernel_size, self._kernel_size], scope='ClassPredictor',
            biases_initializer=tf.constant_initializer(
                self._class_prediction_bias_init))
        if self._apply_sigmoid_to_scores:
          class_predictions_with_background = tf.sigmoid(
              class_predictions_with_background)

    combined_feature_map_shape = shape_utils.combined_static_and_dynamic_shape(
        image_features)
    box_encodings = tf.reshape(
        box_encodings, tf.stack([combined_feature_map_shape[0],
                                 combined_feature_map_shape[1] *
                                 combined_feature_map_shape[2] *
                                 num_predictions_per_location,
                                 1, self._box_code_size]))
    class_predictions_with_background = tf.reshape(
        class_predictions_with_background,
        tf.stack([combined_feature_map_shape[0],
                  combined_feature_map_shape[1] *
                  combined_feature_map_shape[2] *
                  num_predictions_per_location,
                  num_class_slots]))
    return {BOX_ENCODINGS: box_encodings,
            CLASS_PREDICTIONS_WITH_BACKGROUND:
            class_predictions_with_background}

这里代码比较乱吧,从后往前看,输出box_encodings和class_predictions_with_background。

如果需要改extract_features而进行模型创新的话可以改extract_features函数就行了。

其实SSD比较烦的是它的检测模型的postprocess

def postprocess(self, prediction_dict, true_image_shapes):
    # 判断数据合法性
    if ('box_encodings' not in prediction_dict or
        'class_predictions_with_background' not in prediction_dict):
      raise ValueError('prediction_dict does not contain expected entries.')


    with tf.name_scope('Postprocessor'):
      # 获取预测结果
      preprocessed_images = prediction_dict['preprocessed_inputs']
      box_encodings = prediction_dict['box_encodings']
      class_predictions = prediction_dict['class_predictions_with_background']

      # 转换bbox信息
      detection_boxes, detection_keypoints = self._batch_decode(box_encodings)
      detection_boxes = tf.expand_dims(detection_boxes, axis=2)

      # 将logits转换为predictions
      detection_scores_with_background = self._score_conversion_fn(
          class_predictions)

      detection_scores = tf.slice(detection_scores_with_background, [0, 0, 1],
                                  [-1, -1, -1])

      additional_fields = None
      if detection_keypoints is not None:
        additional_fields = {
            fields.BoxListFields.keypoints: detection_keypoints}

      # 通过nms算法筛选bbox
      (nmsed_boxes, nmsed_scores, nmsed_classes, _, nmsed_additional_fields,
       num_detections) = self._non_max_suppression_fn(
           detection_boxes,
           detection_scores,
           clip_window=self._compute_clip_window(
               preprocessed_images, true_image_shapes),
           additional_fields=additional_fields)

      # 封装返回结果
      detection_dict = {
          fields.DetectionResultFields.detection_boxes: nmsed_boxes,
          fields.DetectionResultFields.detection_scores: nmsed_scores,
          fields.DetectionResultFields.detection_classes: nmsed_classes,
          fields.DetectionResultFields.num_detections:
              tf.to_float(num_detections)
      }
      if (nmsed_additional_fields is not None and
          fields.BoxListFields.keypoints in nmsed_additional_fields):
        detection_dict[fields.DetectionResultFields.detection_keypoints] = (
            nmsed_additional_fields[fields.BoxListFields.keypoints])
      return detection_dict

loss在下面

def loss(self, prediction_dict, true_image_shapes, scope=None):
    with tf.name_scope(scope, 'Loss', prediction_dict.values()):
      # keypoints 相关操作
      keypoints = None
      if self.groundtruth_has_field(fields.BoxListFields.keypoints):
        keypoints = self.groundtruth_lists(fields.BoxListFields.keypoints)

      # 获取预测 targets(用于后续计算损失函数)
      weights = None
      if self.groundtruth_has_field(fields.BoxListFields.weights):
        weights = self.groundtruth_lists(fields.BoxListFields.weights)
      (batch_cls_targets, batch_cls_weights, batch_reg_targets,
       batch_reg_weights, match_list) = self._assign_targets(
           self.groundtruth_lists(fields.BoxListFields.boxes),
           self.groundtruth_lists(fields.BoxListFields.classes),
           keypoints, weights)
      if self._add_summaries:
        self._summarize_target_assignment(
            self.groundtruth_lists(fields.BoxListFields.boxes), match_list)

      # 二次筛选样本
      # 如需要设置 正例和反例 的比例,则在这一步实现
      if self._random_example_sampler:
        batch_sampled_indicator = tf.to_float(
            shape_utils.static_or_dynamic_map_fn(
                self._minibatch_subsample_fn,
                [batch_cls_targets, batch_cls_weights],
                dtype=tf.bool,
                parallel_iterations=self._parallel_iterations,
                back_prop=True))
        batch_reg_weights = tf.multiply(batch_sampled_indicator,
                                        batch_reg_weights)
        batch_cls_weights = tf.multiply(batch_sampled_indicator,
                                        batch_cls_weights)

      # 分别计算位置误差与分类误差(通过`Loss`子类对象)
      location_losses = self._localization_loss(
          prediction_dict['box_encodings'],
          batch_reg_targets,
          ignore_nan_targets=True,
          weights=batch_reg_weights)
      cls_losses = ops.reduce_sum_trailing_dimensions(
          self._classification_loss(
              prediction_dict['class_predictions_with_background'],
              batch_cls_targets,
              weights=batch_cls_weights),
          ndims=2)

      # hard example 相关
      if self._hard_example_miner:
        (localization_loss, classification_loss) = self._apply_hard_mining(
            location_losses, cls_losses, prediction_dict, match_list)
        if self._add_summaries:
          self._hard_example_miner.summarize()
      else:
        if self._add_summaries:
          class_ids = tf.argmax(batch_cls_targets, axis=2)
          flattened_class_ids = tf.reshape(class_ids, [-1])
          flattened_classification_losses = tf.reshape(cls_losses, [-1])
          self._summarize_anchor_classification_loss(
              flattened_class_ids, flattened_classification_losses)
        localization_loss = tf.reduce_sum(location_losses)
        classification_loss = tf.reduce_sum(cls_losses)

      # Optionally normalize by number of positive matches
      normalizer = tf.constant(1.0, dtype=tf.float32)
      if self._normalize_loss_by_num_matches:
        normalizer = tf.maximum(tf.to_float(tf.reduce_sum(batch_reg_weights)),
                                1.0)

      localization_loss_normalizer = normalizer
      if self._normalize_loc_loss_by_codesize:
        localization_loss_normalizer *= self._box_coder.code_size
      localization_loss = tf.multiply((self._localization_loss_weight /
                                       localization_loss_normalizer),
                                      localization_loss,
                                      name='localization_loss')
      classification_loss = tf.multiply((self._classification_loss_weight /
                                         normalizer), classification_loss,
                                        name='classification_loss')

      # 封装返回结果
      loss_dict = {
          str(localization_loss.op.name): localization_loss,
          str(classification_loss.op.name): classification_loss
      }
    return loss_dict

参考:
TensorFlow Object Detection API 源码(2) 组件介绍

上一篇下一篇

猜你喜欢

热点阅读