吴恩达深度学习:目标检测之YOLO算法
2018-01-15 本文已影响2687人
koreyoshi_41f9
在学习到目标检测这一课时,在完成课后编程练习,用YOLO实现目标检测时,从Jupyter Notebook上下载yolo.h5,然后准备在自己本地上跑自己的图片,可是执行到load_model(‘model_data/yolo.h5’)时遇到了下面的问题(本人win10系统):
报错信息
raw_code = codecs.decode(code.encode('ascii'), 'base64')
UnicodeEncodeError: 'ascii' codec can't encode character '\xe3' in position 0: ordinal not in range(128)
各种百度无解,然后在查看keras的Git仓库,说keras 2.1.2中load原来的model时会出现这个问题,需要拉最新的master安装,试了之后还是不行。那好吧,我就换keras的版本,将所有keras的版本都试了一遍,还是不行,调用load_model(‘model_data/yolo.h5’)就提示:Python已停止响应
将代码上传到Jupyter Notebook运行可以,代表代码没有问题。后来经过尝试,是下载的yolo.h5文件有问题。好吧废话有点多,现在来说说解决方案。
解决办法
根据YAD2K的git仓库
执行下面的代码生成自己的yolo.h5文件
Linux系统
wget http://pjreddie.com/media/files/yolo.weights
wget https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolo.cfg
./yad2k.py yolo.cfg yolo.weights model_data/yolo.h5
./test_yolo.py model_data/yolo.h5 # output in images/out/
Windows系统
拷贝地址到浏览器下载权重: http://pjreddie.com/media/files/yolo.weights
拷贝地址到浏览器下载配置:https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolo.cfg
在CMD中执行如下命令:
python yad2k.py yolo.cfg yolo.weights model_data/yolo.h5
python test_yolo.py model_data/yolo.h5 # output in images/out/
然后用自己生成的yolo.h5文件跑自己的代码,是不是发现可以了。如果还是报这个错,可以考虑换一下keras版本,我用的是2.1.0,很多人根据我这个方法搞定这个问题了喔,希望对你有帮助。
自己实现的调用摄像头实现的代码
菜鸟一枚,所以代码写的很丑,不过能跑起来,大神勿喷。
通过OpenCV采集图像,但是处理图像是用的PIL,因此中间有个转换的过程,有时间在将PIL改成OpenCV。
# coding: utf-8
import os
import cv2 as cv
import numpy as np
import colorsys
import os
import random
import tensorflow as tf
from keras import backend as K
from keras.models import load_model
from yad2k.models.keras_yolo import yolo_head, yolo_boxes_to_corners
from PIL import Image, ImageDraw, ImageFont
class YOLO():
def __init__(self,model_path = 'model_data/yolo.h5',anchors_path = 'model_data/yolo_anchors.txt',classes_path = 'model_data/coco_classes.txt',image_shape = (480., 640.),max_boxes=10,score_threshold = 0.3,iou_threshold = 0.5):
self.model_path = model_path
self.anchors_path = anchors_path
self.classes_path = classes_path
self.image_shape = image_shape
self.max_boxes = max_boxes
self.score_threshold = score_threshold
self.iou_threshold = iou_threshold
self.class_names = self._read_classes(self.classes_path)
self.anchors = self._read_anchors(self.anchors_path)
self.sess = K.get_session()
self.boxes, self.scores, self.classes = self.generate()
def _read_classes(self,classes_path):
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def _read_anchors(self,anchors_path):
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
anchors = np.array(anchors).reshape(-1, 2)
return anchors
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model must be a .h5 file.'
self.yolo_model = load_model(model_path)
yolo_outputs = yolo_head(self.yolo_model.output, self.anchors, len(self.class_names))
scores, boxes, classes = self.yolo_eval(yolo_outputs, self.image_shape,max_boxes=self.max_boxes,score_threshold=self.score_threshold, iou_threshold=self.iou_threshold)
return boxes, scores, classes
def yolo_filter_boxes(self,box_confidence, boxes, box_class_probs, threshold=.6):
box_scores = box_confidence * box_class_probs
box_classes = K.argmax(box_scores, axis=-1)
box_class_scores = K.max(box_scores, axis=-1)
filtering_mask = box_class_scores >= threshold
scores = tf.boolean_mask(box_class_scores, filtering_mask)
boxes = tf.boolean_mask(boxes, filtering_mask)
classes = tf.boolean_mask(box_classes, filtering_mask)
return scores, boxes, classes
def yolo_non_max_suppression(self,scores, boxes, classes, max_boxes=10, iou_threshold=0.5):
max_boxes_tensor = K.variable(max_boxes, dtype='int32') # tensor to be used in tf.image.non_max_suppression()
K.get_session().run(tf.variables_initializer([max_boxes_tensor])) # initialize variable max_boxes_tensor
nms_indices = tf.image.non_max_suppression(boxes, scores, max_boxes_tensor, iou_threshold=iou_threshold)
scores = K.gather(scores, nms_indices)
boxes = K.gather(boxes, nms_indices)
classes = K.gather(classes, nms_indices)
return scores, boxes, classes
def scale_boxes(delf,boxes, image_shape):
""" Scales the predicted boxes in order to be drawable on the image"""
height = image_shape[0]
width = image_shape[1]
image_dims = K.stack([height, width, height, width])
image_dims = K.reshape(image_dims, [1, 4])
boxes = boxes * image_dims
return boxes
def yolo_eval(self,yolo_outputs, image_shape=(720., 1280.), max_boxes=10, score_threshold=.6, iou_threshold=.5):
box_confidence, box_xy, box_wh, box_class_probs = yolo_outputs
boxes = yolo_boxes_to_corners(box_xy, box_wh)
scores, boxes, classes = self.yolo_filter_boxes(box_confidence, boxes, box_class_probs, score_threshold)
# Scale boxes back to original image shape.
boxes = self.scale_boxes(boxes, image_shape)
scores, boxes, classes = self.yolo_non_max_suppression(scores, boxes, classes, max_boxes, iou_threshold)
return scores, boxes, classes
def draw_boxes(delf,image, out_scores, out_boxes, out_classes, class_names, colors):
font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
thickness = (image.size[0] + image.size[1]) // 300
for i, c in reversed(list(enumerate(out_classes))):
predicted_class = class_names[c]
box = out_boxes[i]
score = out_scores[i]
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
top, left, bottom, right = box
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
print(label, (left, top), (right, bottom))
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
# My kingdom for a good redistributable image drawing library.
for i in range(thickness):
draw.rectangle([left + i, top + i, right - i, bottom - i], outline=colors[c])
draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=colors[c])
draw.text(text_origin, label, fill=(0, 0, 0), font=font)
del draw
def generate_colors(self,class_names):
hsv_tuples = [(x / len(class_names), 1., 1.) for x in range(len(class_names))]
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors))
random.seed(10101) # Fixed seed for consistent colors across runs.
random.shuffle(colors) # Shuffle colors to decorrelate adjacent classes.
random.seed(None) # Reset seed to default.
return colors
def detect(self, image, model_image_size = (608, 608)):
# Preprocess your image
resized_image = image.resize(tuple(reversed(model_image_size)), Image.BICUBIC)
image_data = np.array(resized_image, dtype='float32')
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
out_scores, out_boxes, out_classes = self.sess.run([self.scores, self.boxes, self.classes],
feed_dict={self.yolo_model.input: image_data, K.learning_phase(): 0})
# Generate colors for drawing bounding boxes.
colors = self.generate_colors(self.class_names)
# Draw bounding boxes on the image file
self.draw_boxes(image, out_scores, out_boxes, out_classes, self.class_names, colors)
return image
def close_session(self):
self.sess.close()
if __name__ == '__main__':
yolo = YOLO()
cv.namedWindow("camera", 1)
capture = cv.VideoCapture(0) #开启摄像头
num = 0;
while True:
result, img = capture.retrieve()
image = Image.fromarray(cv.cvtColor(img,cv.COLOR_BGR2RGB))
image = yolo.detect(image)
image.save("test.jpg", quality=100)
im = cv.cvtColor(np.asarray(image),cv.COLOR_RGB2BGR)
cv.imshow("camera", im)
key = cv.waitKey(100)
yolo.close_session()
del (capture)
cv.DestroyWindow("camera")
电脑太渣(公司配的办公电脑HP EliteBook 840 G2,没有GPU),跑一张图片大概需要3~4秒,所以代码跑起来效果不好,各位大佬电脑好的应该可以实现实时检测。
我也是站在巨人的肩膀上,部分代码来源于吴恩达老师人工智能课程和yad2k