数字签名与证书

2022-04-07  本文已影响0人  Drew_MyINTYRE

摘要算法

实现完整性的手段主要是摘要算法(Digest Algorithm),也就是常说的散列函数、哈希函数(Hash Function)。

你可以把摘要算法近似地理解成一种特殊的压缩算法,它能够把任意长度的数据 压缩 成固定长度,换一个角度,也可以把摘要算法理解成特殊的 单向 加密算法,它只有算法,没有密钥,加密后的数据无法解密,不能从摘要逆推出原文。摘要算法实际上是把数据从一个 “大空间” 映射到了 “小空间”,所以就存在 冲突(collision,也叫碰撞)的可能性,就如同现实中的指纹一样,可能会有两份不同的原文对应相同的摘要。好的摘要算法必须能够 抵抗冲突,让这种可能性尽量地小。

你一定在日常工作中听过、或者用过 MD5(Message-Digest 5)、SHA-1(Secure Hash Algorithm 1),它们就是最常用的两个摘要算法,能够生成 16 字节和 20 字节长度的数字摘要。但这两个算法的安全强度比较低,不够安全,在 TLS 里已经被禁止使用了。

目前 TLS 推荐使用的是 SHA-1 的后继者:SHA-2。

SHA-2 实际上是一系列摘要算法的统称,总共有 6 种,常用的有 SHA224、SHA256、SHA384,分别能够生成 28 字节、32 字节、48 字节的摘要。

比如,你发了条消息:“转账 1000 元”,然后再加上一个 SHA-2 的摘要。网站收到后也计算一下消息的摘要,把这两份“指纹”做个对比,如果一致,就说明消息是完整可信的,没有被修改。

真正的完整性必须要建立在机密性之上,在混合加密系统里用会话密钥加密消息和摘要,这样黑客无法得知明文,也就没有办法动手脚了。

数字签名

现实生活中,解决身份认证的手段是签名和印章,只要在纸上写下签名或者盖个章,就能够证明这份文件确实是由本人而不是其他人发出的。

数字签名的原理其实很简单,就是把公钥私钥的用法反过来,之前是公钥加密、私钥解密,现在是私钥加密、公钥解密。同时实现 身份认证不可否认

只有用私钥对应的公钥才能解开,拿到摘要后,再比对原文验证完整性,就可以像签署文件一样证明消息确实是你发的。

数字证书和 CA

这里还有一个 公钥的信任 问题。因为谁都可以发布公钥,我们还缺少防止黑客伪造公钥的手段,也就是说,怎么来判断这个公钥就是你或者某宝的公钥呢?

找一个公认的可信第三方,构建起公钥的信任链。这个 第三方 就是我们常说的 CA(Certificate Authority,证书认证机构)。它就像网络世界里的公安局、教育部、公证中心,具有极高的可信度,由它来给各个公钥签名,用自身的信誉来保证公钥无法伪造,是可信的。

CA 对公钥的签名认证也是有格式的,不是简单地把公钥绑定在持有者身份上就完事了,还要包含序列号、用途、颁发者、有效时间等等,把这些打成一个包再签名,完整地证明公钥关联的各种信息,形成 数字证书(Certificate)。

CA 怎么证明自己呢?

这还是信任链的问题。小一点的 CA 可以让大 CA 签名认证,但链条的最后,也就是 Root CA,就只能自己证明自己了,这个就叫 自签名证书(Self-Signed Certificate)或者 根证书(Root Certificate)。你必须相信,否则整个证书信任链就走不下去了。

有了这个证书体系,操作系统和浏览器都内置了各大 CA 的根证书,上网的时候只要服务器发过来它的证书,就可以验证证书里的签名,顺着证书链(Certificate Chain)一层层地验证,直到找到根证书,就能够确定证书是可信的,从而里面的公钥也是可信的。

小结:

假设有一个三级的证书体系(Root CA=> 一级 CA=> 二级 CA),你能详细解释一下证书信任链的验证过程吗?

服务器返回的是 证书链(不包括根证书,根证书预置在浏览器中),然后浏览器就可以使用信任的根证书(根公钥)解析 证书链 的根证书得到一级证书的 公钥+摘要验签,然后拿一级证书的 公钥解密 一级证书拿到二级证书的公钥和摘要验签,再然后拿二级证书的公钥解密二级证书得到服务器的公钥和摘要验签,验证过程就结束了。

为什么公钥能够建立信任链,用对称加密算法里的对称密钥行不行呢?

上一篇 下一篇

猜你喜欢

热点阅读