数据-R语言-图表-决策-Linux-Python生物信息学与算法Cook R

Tools for experiments-生成拉丁方(coun

2017-09-21  本文已影响41人  王诗翔

问题

你想要生成平衡序列用于实验。

方案

函数 latinsquare() (在下方定义) 可以被用来生成拉丁方

latinsquare(4)
#>      [,1] [,2] [,3] [,4]
#> [1,]    1    2    4    3
#> [2,]    2    1    3    4
#> [3,]    3    4    1    2
#> [4,]    4    3    2    1


# To generate 2 Latin squares of size 4 (in sequence)
latinsquare(4, reps=2)
#>      [,1] [,2] [,3] [,4]
#> [1,]    3    4    1    2
#> [2,]    4    3    2    1
#> [3,]    1    2    4    3
#> [4,]    2    1    3    4
#> [5,]    4    2    1    3
#> [6,]    2    3    4    1
#> [7,]    1    4    3    2
#> [8,]    3    1    2    4


# It is better to put the random seed in the function call, to make it repeatable
# This will return the same sequence of two Latin squares every time
latinsquare(4, reps=2, seed=5873)
#>      [,1] [,2] [,3] [,4]
#> [1,]    1    4    2    3
#> [2,]    4    1    3    2
#> [3,]    2    3    4    1
#> [4,]    3    2    1    4
#> [5,]    3    2    4    1
#> [6,]    1    4    2    3
#> [7,]    4    3    1    2
#> [8,]    2    1    3    4

存在大小为4的576个拉丁方。函数latinsquare会随机选择其中n个并以序列形式返回它们。这被称为重复拉丁方设计

一旦你生成了自己的拉丁方,你需要确保不存在许多重复的序列。这在小型拉丁方中非常普遍 (3x3 or 4x4)。

生成拉丁方的函数

这个函数用来生成拉丁方。它使用了略微暴力的算法来生成每个拉丁方,有时候在给定位置的数字用完了它可能会失败。这种情况下,它会尝试再试一试。可能存在一种更好的办法吧,但我并不清楚。

## - len is the size of the latin square
## - reps is the number of repetitions - how many Latin squares to generate
## - seed is a random seed that can be used to generate repeatable sequences
## - returnstrings tells it to return a vector of char strings for each square,
##    instead of a big matrix. This option is only really used for checking the
##    randomness of the squares.
latinsquare <- function(len, reps=1, seed=NA, returnstrings=FALSE) {

    # Save the old random seed and use the new one, if present
    if (!is.na(seed)) {
        if (exists(".Random.seed"))  { saved.seed <- .Random.seed }
        else                         { saved.seed <- NA }
        set.seed(seed)
    }
    
    # This matrix will contain all the individual squares
    allsq <- matrix(nrow=reps*len, ncol=len)
    
    # Store a string id of each square if requested
    if (returnstrings) {  squareid <- vector(mode = "character", length = reps) }

    # Get a random element from a vector (the built-in sample function annoyingly
    #   has different behavior if there's only one element in x)
    sample1 <- function(x) {
        if (length(x)==1) { return(x) }
        else              { return(sample(x,1)) }
    }
    
    # Generate each of n individual squares
    for (n in 1:reps) {

        # Generate an empty square
        sq <- matrix(nrow=len, ncol=len) 

        # If we fill the square sequentially from top left, some latin squares
        # are more probable than others.  So we have to do it random order,
        # all over the square.
        # The rough procedure is:
        # - randomly select a cell that is currently NA (call it the target cell)
        # - find all the NA cells sharing the same row or column as the target
        # - fill the target cell
        # - fill the other cells sharing the row/col
        # - If it ever is impossible to fill a cell because all the numbers
        #    are already used, then quit and start over with a new square.
        # In short, it picks a random empty cell, fills it, then fills in the 
        # other empty cells in the "cross" in random order. If we went totally randomly
        # (without the cross), the failure rate is much higher.
        while (any(is.na(sq))) {

            # Pick a random cell which is currently NA
            k <- sample1(which(is.na(sq)))
            
            i <- (k-1) %% len +1       # Get the row num
            j <- floor((k-1) / len) +1 # Get the col num
            
            # Find the other NA cells in the "cross" centered at i,j
            sqrow <- sq[i,]
            sqcol <- sq[,j]

            # A matrix of coordinates of all the NA cells in the cross
            openCell <-rbind( cbind(which(is.na(sqcol)), j),
                              cbind(i, which(is.na(sqrow))))
            # Randomize fill order
            openCell <- openCell[sample(nrow(openCell)),]
            
            # Put center cell at top of list, so that it gets filled first
            openCell <- rbind(c(i,j), openCell)
            # There will now be three entries for the center cell, so remove duplicated entries
            # Need to make sure it's a matrix -- otherwise, if there's just 
            # one row, it turns into a vector, which causes problems
            openCell <- matrix(openCell[!duplicated(openCell),], ncol=2)

            # Fill in the center of the cross, then the other open spaces in the cross
            for (c in 1:nrow(openCell)) {
                # The current cell to fill
                ci <- openCell[c,1]
                cj <- openCell[c,2]
                # Get the numbers that are unused in the "cross" centered on i,j
                freeNum <- which(!(1:len %in% c(sq[ci,], sq[,cj])))

                # Fill in this location on the square
                if (length(freeNum)>0) { sq[ci,cj] <- sample1(freeNum) }
                else  {
                    # Failed attempt - no available numbers
                    # Re-generate empty square
                    sq <- matrix(nrow=len, ncol=len)

                    # Break out of loop
                    break;
                }
            }
        }
        
        # Store the individual square into the matrix containing all squares
        allsqrows <- ((n-1)*len) + 1:len
        allsq[allsqrows,] <- sq
        
        # Store a string representation of the square if requested. Each unique
        # square has a unique string.
        if (returnstrings) { squareid[n] <- paste(sq, collapse="") }

    }

    # Restore the old random seed, if present
    if (!is.na(seed) && !is.na(saved.seed)) { .Random.seed <- saved.seed }

    if (returnstrings) { return(squareid) }
    else               { return(allsq) }
}

检查函数的随机性

一些生成拉丁方的算法并不是非常的随机。4x4的拉丁方有576种,它们每一种都应该有相等的概率被生成,但一些算法没有做到。可能我们没有必要检查上面的函数,但这里确实有办法可以做到这一点。前面我使用的算法并没有好的随机分布,我们运行下面的代码可以发现这一点。

这个代码创建10,000个4x4的拉丁方,然后计算这576个唯一拉丁方出现的频数。计数结果应该形成一个不是特别宽的正态分布;否则这个分布就不是很随机了。我相信期望的标准差是根号(10000/576)(假设随机生成拉丁方)。

# Set up the size and number of squares to generate
squaresize    <- 4
numsquares    <- 10000

# Get number of unique squares of a given size.
# There is not a general solution to finding the number of unique nxn squares
# so we just hard-code the values here. (From http://oeis.org/A002860)
uniquesquares <- c(1, 2, 12, 576, 161280, 812851200)[squaresize]

# Generate the squares
s <- latinsquare(squaresize, numsquares, seed=122, returnstrings=TRUE)

# Get the list of all squares and counts for each
slist   <- rle(sort(s))
scounts <- slist[[1]]

hist(scounts, breaks=(min(scounts):(max(scounts)+1)-.5))
cat(sprintf("Expected and actual standard deviation: %.4f, %.4f\n",
              sqrt(numsquares/uniquesquares), sd(scounts) ))
#> Expected and actual standard deviation: 4.1667, 4.0883

原文链接:http://www.cookbook-r.com/Tools_for_experiments/Generating_counterbalanced_orders/

上一篇下一篇

猜你喜欢

热点阅读