Spark

Spark从入门到精通64:Dataset的Untyped操作

2020-07-20  本文已影响0人  勇于自信

untyped操作:观察一下就会发现,实际上基本就涵盖了普通sql语法的全部。

untyped基本操作如下:
select
where
join
group by
agg
实践:在这里改造一下前面讲解的那个统计部门平均薪资和年龄的案例,将所有的untyped算子都应用进去
输入数据:
employee.json:

{"name": "Leo", "age": 25, "depId": 1, "gender": "male", "salary": 20000}
{"name": "Marry", "age": 30, "depId": 2, "gender": "female", "salary": 25000}
{"name": "Jack", "age": 35, "depId": 1, "gender": "male", "salary": 15000}
{"name": "Tom", "age": 42, "depId": 3, "gender": "male", "salary": 18000}
{"name": "Kattie", "age": 21, "depId": 3, "gender": "female", "salary": 21000}
{"name": "Jen", "age": 30, "depId": 2, "gender": "female", "salary": 28000}
{"name": "Jen", "age": 19, "depId": 2, "gender": "female", "salary": 8000}

department:

{"id": 1, "name": "Technical Department"}
{"id": 2, "name": "Financial Department"}
{"id": 3, "name": "HR Department"}

代码:

package com.spark.ds

import org.apache.spark.sql.{Column, SparkSession}
import org.apache.spark.sql.functions._

object UnTypedOperation {
  case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Long)
  case class Department(id: Long, name: String)

  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .appName("UnTypedOperation")
      .master("local")
      .config("spark.sql.warehouse.dir", "D:/spark-warehouse")
      .getOrCreate()
    import spark.implicits._
    val employee = spark.read.json("inputData/employee.json")
    val department = spark.read.json("inputData/department.json")
    employee
      .where("age > 20")
      .join(department,$"depId" === $"id")
      .groupBy(department("name"),employee("gender"))
      .agg(avg(employee("salary")))
      .select(  $"name",$"gender",$"avg(salary)")
      .show()
  }
}

输出结果

+--------------------+------+-----------+
|                name|gender|avg(salary)|
+--------------------+------+-----------+
|       HR Department|female|    21000.0|
|Technical Department|  male|    17500.0|
|Financial Department|female|    26500.0|
|       HR Department|  male|    18000.0|
+--------------------+------+-----------+
上一篇 下一篇

猜你喜欢

热点阅读