Flurry 分析 API 中文教程(Flurry Analyt
本文记录使用 API 获取 Flurry Analytics 报告的文档。
包含前期准备、API基础、数据详情、请求示例等
初期准备
- 获取 App Token
- header 中必须包含:
Authorization: Bearer + App Token
- Flurry Analytics API Query Builder 查询器、调试器
示例:
Headers:
Authorization: Bearer xxxxxx
API 基础
API 地址:https://api-metrics.flurry.com/public/v1/data/
API 请求可以组合起来去查询分析数据的元素。 API 中的所有内容都区分大小写。
endPoint/table/timeGrain/dimension1/dimension2;show=all/dimension3{...}?metrics=[comma-separated-metrics]&dateTime=[..]&filters=[...]&topN=[..]&sort=[..]&having=[..]&format=[..]&timeZone=[..]
参数表及示例详见原文。
参数 | 必要 | 例子 | ||||
---|---|---|---|---|---|---|
endpoint | 是 | v1: https://api-metrics.flurry.com/public/v1/data/ | ||||
table | 是 | <a href="#appUsage">appUsage</a>、<a href="#appEvent">appEvent</a>、 <a href="#eventParams">eventParams</a>、<a href="#realtime">realtime</a> | ||||
timeGrain | 是 | 见表详情内容 | ||||
dimension | 否 | 见表详情内容 | ||||
metrics | 是 | 见表详情内容 | ||||
dateTime | 是 | Format for Day, Week: YYYY-MM-DD/YYYY-MM-DD Format for Month: YYYY-MM/YYYY-MM Format for Hour: YYYY-MM-DDTHH/YYYY-MM-DDTHH (HH in 24- hour format) follows ISO 8601 |
||||
filters | 否 | 组合的一个或多个维度属性过滤器(使用 AND )以减少输出以匹配您的条件。 id和name可用于所有维度。 一些维度具有在维度部分中调用的附加属性。格式: `dimension1 |
attribute-operator [ value(s) ], dimension2 | attribute-operator [ value(s) ]<br>运算符: in, notin, contains, startsWith<br>例如: country |
name-in [‘United States’,‘Canada’,’Mexico’] ,appVersion | name-in[‘2.3’]` |
sort | 否 | 指定一个或多个指标来排序结果。 如果未指定顺序,则默认为降序。 例如: `sort=sessions |
desc,activeDevices | desc` | ||
topN | 否 | 减少结果以匹配此参数指定的数字。 如果使用此参数,则还必须使用排序来指示必须计算顶点 n 的度量和顺序 例如:`topN=5 & sort=sessions |
desc` | |||
having | 否 | 减少结果以匹配指定的指标标准。 您可以组合多个指标标准。 格式: metric-operator[value(s)] 可用运算符:等于(eq),大于(gt),小于(lt),而不是版本 例子: sessions-gt[1000],activeDevices-gt[200]
|
||||
format | 否 | json (默认), csv | ||||
timeZone | 否 | 默认的结果是UTC时区。 要获取所需时区的结果,请使用此参数。 例如: America/New_York 或 America/Los_Angeles
|
关于时区:https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
Analytics Metrics 分析指标
以下是可用于报告的指标。
Metric 指标 | 描述 |
---|---|
sessions | 用户访问应用程序的次数 |
activeDevices | 访问应用程序的唯一设备 |
newDevices | 安装并启动应用程序的新设备 |
timeSpent | 用户花在应用程序中的时间 |
averageTimePerDevice | 平均每个用户在应用程序中花费的时间 |
averageTimePerSession | 平均用户在应用程序每个会话中花费的时间 |
Analytics Dimensions 分析范围、维度
以下是可用于报告的维度和维度属性。
Dimensions范围、维度 | 描述 | 值 |
---|---|---|
company | Flurry company account | id, name (默认) |
app | Flurry app | id, name (默认), company|id, apiKey, platform|id, platform|name |
country | 每个国家的维度总计 | id, name (默认), iso |
appVersion | 应用程式的版本号,名称,公司编号,应用程式编号,已删除和筛选。 删除和过滤是布尔值(0或1),并根据开发人员对Flurry开发人员门户的操作反映应用程序版本的当前状态 | id, name (默认), company|id, app|id, deleted, filtered |
language | Language id and name | id, name (默认) |
region | 地区:Region id and name | id, name (default) |
category | 分类: App category id and name | id, name (default) |
event | 仅适用于appEvent表; 事件ID,名称,应用ID,公司ID,删除和过滤。 删除和过滤是布尔值(0或1),并根据开发人员对Flurry开发人员门户的操作反映应用程序事件的当前状态。 | id, name (default) , company|id, app|id, deleted, filtered |
在运行度量标准查询之前,您需要知道可能的维度值。 例如:您公司帐户上所有应用的列表名称和api密钥:
https://api-metrics.flurry.com/public/v1/data/appUsage/day/company/app;show=name,apiKey?metrics=...
通常,要查看为给定维度返回的默认名称以外的值,请添加:
;show=all
or
;show=id (any other value listed in the value column above for the given dimension
添加维度名称之后:
https://api-metrics.flurry.com/public/v1/data/appUsage/day/company/country;show=all/category?metrics=sessions,activeDevices,newDevices,timeSpent&dateTime=2017-05-01/2017-05-02
https://api-metrics.flurry.com/public/v1/data/appUsage/day/company/country;show=iso/category?metrics=sessions,activeDevices,newDevices,timeSpent&dateTime=2017-05-01/2017-05-02
App Usage Data 应用使用的数据
Table: <a id="appUsage">appUsage</a>
Metrics 指标 | Dimensions 范围 | Time Grain |
---|---|---|
sessions | company | day |
activeDevices | app | week |
newDevices | appVersion | month |
timeSpent | country | all |
averageTimePerDevice | language | |
averageTimePerSession | region | |
medianTimePerSession | category |
示例:关键应用指标查询
对于所有应用程序,每日会话,每日活动设备,2 天的新设备:请注意,由于过滤器中没有应用信息,结果将包括您公司的所有应用程序。
Request 请求:
https://api-metrics.flurry.com/public/v1/data/appUsage/day/app?metrics=sessions,activeDevices,newDevices&dateTime=2016-07-01/2016-07-03
Response 响应:
{
"rows": [{
"dateTime": "2016-07-01 00:00:00.000-07:00",
"app|name": "foo",
"sessions": 372,
"activeDevices": 123,
"newDevices": 32},
{
"dateTime": "2016-07-01 00:00:00.000-07:00",
"app|name": "bar",
"sessions": 1120,
"activeDevices": 487,
"newDevices": 34},
{
"dateTime": "2016-07-02 00:00:00.000-07:00",
"app|name": "foo",
"sessions": 421,
"activeDevices": 140,
"newDevices": 12},
{
"dateTime": "2016-07-02 00:00:00.000-07:00",
"app|name": "bar",
"sessions": 1164,
"activeDevices": 453,
"newDevices": 51}]
}
对于特定应用程序,每月会话,有效设备和新设备(2个月):
Request using Flurry API key:
https://api-metrics.flurry.com/public/v1/data/appUsage/day?metrics=sessions,activeDevices,newDevices&dateTime=2016-06-01/2016-08-01&filters=app|apiKey-in[3WD7Q8329867K7MY6RNS]
Request using App name:
https://api-metrics.flurry.com/public/v1/data/appUsage/day?metrics=sessions,activeDevices,newDevices&dateTime=2016-06-01/2016-08-01&filters=app|name-in[appname]
Response:
{
"rows": [{
"dateTime": "2016-06-01 00:00:00.000-07:00",
"app|name": "foo",
"sessions": 12744,
"activeDevices": 6373,
"newDevices": 6373
},{
"dateTime": "2016-07-01 00:00:00.000-07:00",
"app|name": "foo",
"sessions": 13805,
"activeDevices": 6882,
"newDevices": 6882
}]
}
App Events Data
Table: <a id="appEvent">appEvent</a>
Metrics 指标 | Dimensions 范围 | Time Grain |
---|---|---|
activeDevices | company | day |
newDevices | app | week |
eventDuration | appVersion | month |
averageTimePerDevice | country | all |
averageTimePerSession | language | |
medianTimePerSession | region | |
occurrences | category | |
event |
示例:关键应用事件指标查询
对于特定应用程序事件,应用程序版本的事件发生次数(2天):
Request:
https://api-metrics.flurry.com/public/v1/data/appEvent/day/app/appVersion/event?metrics=occurrences&dateTime=2016-07-01/2016-07-03&filters=app|name-in[foo],event|name-in[login,register]
Response:
{
"rows": [{
"dateTime": "2016-07-01 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "login",
"occurrences": 293
},{
"dateTime": "2016-07-01 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "register",
"occurrences": 57
},{
"dateTime": "2016-07-02 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "login",
"occurrences": 146
},{
"dateTime": "2016-07-02 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "register",
"occurrences": 31
}]
}
对于特定的应用程序事件,按活动设备排序的前5个国家的有效设备和新设备(2天):
Request:
https://api-metrics.flurry.com/public/v1/data/appEvent/day/app/country?metrics=activeDevices,newDevices&dateTime=2016-07-01/2016-07-03&filters=app|name-in[foo],event|name-in[login]&topN=5&sort=activeDevices|desc
Response:
{
"rows": [{
"dateTime": "2016-07-01 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "login",
"country|name": "United States",
"occurrences": 515
},{
"dateTime": "2016-07-01 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "login",
"country|name": "United Kingdom",
"occurrences": 210
},{
"dateTime": "2016-07-01 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "login",
"country|name": "Canada",
"occurrences": 165
},{
"dateTime": "2016-07-01 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "login",
"country|name": "Germany",
"occurrences": 87
},{
"dateTime": "2016-07-01 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "login",
"country|name": "France",
"occurrences": 46
},{
"dateTime": "2016-07-02 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "login",
"country|name": "United States",
"occurrences": 435
},{
"dateTime": "2016-07-02 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "login",
"country|name": "United Kingdom",
"occurrences": 190
},{
"dateTime": "2016-07-02 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "login",
"country|name": "Canada",
"occurrences": 127
},{
"dateTime": "2016-07-02 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "login",
"country|name": "Germany",
"occurrences": 76
},{
"dateTime": "2016-07-02 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "login",
"country|name": "France",
"occurrences": 39
}]
}
App Event Parameter Data
Table: <a id="eventParams">eventParams</a>
Metrics | Dimensions | Time Grain |
---|---|---|
count | company | day |
app | week | |
appVersion | month | |
country | all | |
language | ||
region | ||
category | ||
event | ||
paramName | ||
paramValue |
示例:app 事件参数指标查询
对于特定的应用程序事件,提供1天的事件参数值细目:
Request:
https://api-metrics.flurry.com/public/v1/data/eventParams/day/app;show=all/event/paramName/paramValue?metrics=count&filters=app|name-in[foo],event|name-in[level_complete]&dateTime=2016-11-07/2016-11-08
Response:
{
"rows": [{
"dateTime": "2016-11-07 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "level_complete",
"paramName|name": "level",
"paramValue|name": "1",
"count": 32
},{
"dateTime": "2016-11-07 00:00:00.000-07:00",
"app|name": "foo",
"event|name": "login",
"paramName|name": "level",
"paramValue|name": "2",
"count": 15
}]
}
Real Time App Data 实时数据
Table: <a id="realtime">realtime</a> (最近 48 小时)
Metrics | Dimensions | Time Grain |
---|---|---|
sessions | company | hour |
activeDevices | app | day |
appVersion | all | |
country |
示例:实时指标查询,仅限48小时
对于特定应用程序,会话和活动设备在特定时间内:
Request:
https://api-metrics.flurry.com/public/v1/data/realtime/hour?metrics=sessions,activeDevices&dateTime=2016-08-27T12/2016-08-27T13&filters=app|name-in[foo]
Response:
{
"rows": [{
"dateTime": "2016-08-31 12:00:00.000-07:00",
"app|name": "foo",
"sessions": 145,
"activeDevices": 90
}]
}
对于特定应用程序,在特定24小时内(不是日期边界),区分应用程序版本的会话总数和活动设备:
Request:
https://api-metrics.flurry.com/public/v1/data/realtime/all/app/appVersion?metrics=sessions,activeDevices&dateTime=2016-08-31T12/2016-09-01T13&filters=app|name-in[appname]
Response:
{
"rows": [{
"dateTime": "2016-08-31 12:00:00.000-07:00",
"app|name": "foo",
"appVersion|name": "1.0",
"sessions": 231,
"activeDevices": 87
},{
"dateTime": "2016-08-31 12:00:00.000-07:00",
"app|name": "foo",
"appVersion|name": "1.1",
"Sessions": 345,
"activeDevices": 167
}]
}
Error
详见原文。
官方文档:https://developer.yahoo.com/flurry/docs/api/code/analyticsapi/
如果有什么建议或者问题可以随时联系我,共同探讨学习: