代数系统

2016-11-09  本文已影响0人  陈码工

代数系统的实例和一般性质

定义

时钟系统, 生成元

举例子: 定义一个一目运算clock,
clock(k) =
k+1, k!=m
1 , k==m
我们从元1开始, 可以导出所有M中的元, 只要不断使用clock运算就可以了. 后面我们会看到, 在群那里, 我们提出了生成元的概念, 其实就是这个东西;

模4, 一个重要的案例

[0] = {..., -8, -4, 0, 4, 8, ...}
[1] = {...,-7,-3, 1, 5, 9, ..}
[2] = {..., -6, -2, 2, 6, 10, ..}
[3] = {..., -5, -1, 3, 7, 11, ..}

定义模4加法+运算为 [i] + [j] = [i+j]

于是<Z4, +>构成了一个代数系统, 满足了结合律, 有单位元[0], 分配率, 事实上已经是一个群, 甚至还满足了交换律, 构成阿贝尔交换群

启示: 代数系统是一个广泛的概念, 集合S不仅仅可以只是拥有数字这样的元素, 也可以是同余类这样的等价类, 我们还可以将对象之间的关系定义成运算, 从而进行数学建模, 是研究问题的最基本方法.

同态和同构

同态

同构

同余关系

上一篇 下一篇

猜你喜欢

热点阅读