震惊!垃圾分类居然能用Python搞定!
2019-07-03 本文已影响111人
9ba4bd5525b9
1 环境
操作系统:Windows
Python版本:3.7.3
2 需求分析
我们先需要通过
拿到 cid 之后,再填入下面的链接中。
http://comment.bilibili.com/{cid}.xml
打开之后,就可以看到该视频的弹幕列表。

有了弹幕数据后,我们需要先将解析好,并保存在本地,方便进一步的加工处理,如制成词云图进行展示。
3 代码实现
在这里,我们获取网页的请求使用 requests 模块;解析网址借助 beautifulsoup4 模块;保存为CSV数据,这里借用 pandas 模块。因为都是第三方模块,如环境中没有可以使用 pip 进行安装。
pip install requests
pip install beautifulsoup4
pip install lxml
pip install pandas
模块安装好之后,进行导入
import requests
from bs4 import BeautifulSoup
import pandas as pd
请求、解析、保存弹幕数据

接下来,我们就对保存好的弹幕数据进行深加工。
制作词云,我们需要用到 wordcloud 模块、matplotlib 模块、jieba 模块,同样都是第三方模块,直接用 pip 进行安装。
pip install wordcloud
pip install matplotlib
pip install jieba
模块安装好之后,进行导入,因为我们读取文件用到了 panda 模块,所以一并导入即可
我们可以自行选择一张图片,并基于此图片来生成一张定制的词云图。我们可以自定义一些词云样式,代码如下:

接下来,我们要读取文本信息(弹幕数据),进行分词并连接起来:

最后来看看我们效果图
