Anomaly Detection 异常检测(李宏毅ML2019
1. 问题的定义:Problem Formulation



2. 应用

3. 异常检测可否看作二值分类?

一是无法穷举所有异常的情况,也就无法知道异常的分布,因为异常的情况变化太大;
二是很难收集到所有的异常示例
4. 异常检测的类别:有无标签,是否数据污染

4.1 With Label



如何估计信心分数

深度学习方法来确定分类和信心分数


评估标注


4.2 Without Label









参考文献
========
Open Set Recognition
论文阅读-Open set Recognition
Trying to find task :
https://medium.com/alex-attia-blog/the-simpsons-character-recognition-using-keras-d8e1796eae36
(simple is easy)
https://medium.com/@tyreeostevenson/teaching-a-computer-to-classify-anime-8c77bc89b881
https://github.com/mitmul/chainer-handson/blob/master/animeface-character/classify_characters.ipynb
Pokemeon v.s. difimont
========================
Tool:
https://github.com/yzhao062/anomaly-detection-resources
https://scikit-learn.org/stable/modules/outlier_detection.html
========================
There is an overview paper open-set detector
=====================
https://www.youtube.com/watch?v=12Xq9OLdQwQ (learn some theory here)
https://www.youtube.com/watch?v=5vrY4RbeWkM (too simple)
http://cucis.ece.northwestern.edu/projects/DMS/publications/AnomalyDetection.pdf (old 2009)
Overview: https://murphymind.blogspot.com/2017/07/anomaly.detection.html
NG‘s course: https://www.youtube.com/watch?v=086OcT-5DYI
https://www.quora.com/Do-generative-adversarial-networks-function-for-outlier-detection
以後看到奇怪的事,就要到派出所報案喔
https://zhuanlan.zhihu.com/p/42267652
Time series data
https://github.com/numenta/NAB
Lots of data set?
http://odds.cs.stonybrook.edu/
https://github.com/alexattia/SimpsonRecognition
https://www.kaggle.com/alexattia/the-simpsons-characters-dataset/kernels
Assumption: most of them are normal player
https://www.reddit.com/r/twitchplayspokemon/comments/49ki48/top_ten_tpp_trolls_of_all_time/
https://jgeekstudies.org/2016/10/08/the-effect-of-trolls-on-twitch-plays-pokemon/
https://www.wired.com/2014/02/twitch-plays-pokemon/
https://kotaku.com/how-people-are-actually-making-progress-in-twitch-play-1525261786
https://kotaku.com/not-everyone-playing-twitch-plays-pokemon-appears-to-1530921548
https://www.quora.com/Do-all-the-trolls-on-Twitch-Plays-Pokemon-make-it-funnier
========
Do I have to mention the native approach like clustering or KNN??????
====================
There is an overview paper open-set detector
=====================
Adversarially Learned One-Class Classifier for Novelty Detection
[1] ](https://www.quora.com/Do-generative-adversarial-networks-function-for-outlier-detection)Artificially intelligent painters invent new styles of art
[2] Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
[3] http://openaccess.thecvf.com/con...
[4] Shehroz Khan's answer to Could I use GANs to generate negative samples for one class classification?
[5] Satellite Image Forgery Detection and Localization Using GAN and One-Class Classifier