DAGScheduler源码分析

2018-01-21  本文已影响0人  Sunnywade

简介

RDD源码走读分析的例子中看到,通过RDD执行map和reduce方法即可计算数组元素的平方和,RDD的reduce方法最终调用了dagScheduler.runJob方法执行任务,DAGScheduler是如何划分划分并行计算任务的是本章关注的重点。在了解DAGScheduler前先了解下几个概念:

几个概念

从runJob开始吧

在RDD执行一个action的操作后最终都会调用DAGScheduler的runJob方法开始执行作业,runJob的代码如下:

  def runJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): Unit = {
    val start = System.nanoTime
    val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)
    ThreadUtils.awaitReady(waiter.completionFuture, Duration.Inf)
    waiter.completionFuture.value.get match {
      case scala.util.Success(_) =>
        logInfo("Job %d finished: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
      case scala.util.Failure(exception) =>
        logInfo("Job %d failed: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
        // SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler.
        val callerStackTrace = Thread.currentThread().getStackTrace.tail
        exception.setStackTrace(exception.getStackTrace ++ callerStackTrace)
        throw exception
    }
  }

这个方法传入了要计算的RDD,计算函数 func,需要在RDD的哪些partition上计算,结果处理函数resultHandler,配置项信息等,调用SubmitJob函数,该函数返回了一个waiter对象用于异步等待计算结果返回。因此重点在于submitJob之中。
submitJob的代码如下:

  def submitJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): JobWaiter[U] = {
    // Check to make sure we are not launching a task on a partition that does not exist.
    val maxPartitions = rdd.partitions.length
    partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
      throw new IllegalArgumentException(
        "Attempting to access a non-existent partition: " + p + ". " +
          "Total number of partitions: " + maxPartitions)
    }

    val jobId = nextJobId.getAndIncrement()
    if (partitions.size == 0) {
      // Return immediately if the job is running 0 tasks
      return new JobWaiter[U](this, jobId, 0, resultHandler)
    }

    assert(partitions.size > 0)
    val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
    val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
    eventProcessLoop.post(JobSubmitted(
      jobId, rdd, func2, partitions.toArray, callSite, waiter,
      SerializationUtils.clone(properties)))
    waiter
  }

这段代码主要包括判断partition 的index是否越界,生成JobID,生成waiter对象,将JobSubmitted事件提交到事件处理对列eventProcessLoop中,因此需要重点看这个队列是怎样处理JobSubmitted事件的。

eventProcessLoop是一个DAGSchedulerEventProcessLoop对象,DAGSchedulerEventProcessLoop负责接收事件,并在一个Daemon线程中异步的按照FIFO的顺序处理这些事件。事件处理的主体逻辑在doOnReceive中,该方法中对JobSubmitted的处理方式是调用DAGScheduler的handleJobSubmitted方法,因此视线需要转移到handleJobSubmitted上来:

  private[scheduler] def handleJobSubmitted(jobId: Int,
      finalRDD: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      callSite: CallSite,
      listener: JobListener,
      properties: Properties) {
    var finalStage: ResultStage = null
    try {
      finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
    } catch {
      case e: Exception =>
        listener.jobFailed(e)
        return
    }

    val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)

    val jobSubmissionTime = clock.getTimeMillis()
    jobIdToActiveJob(jobId) = job
    activeJobs += job
    finalStage.setActiveJob(job)
    val stageIds = jobIdToStageIds(jobId).toArray
    val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
    listenerBus.post(
      SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
    submitStage(finalStage)
  }

前面提到,一个Job包中包含一个ResultStage和多个ShuffleMapStage,在handleJobSubmitted中首先创建了ResultStage(这里叫finalStage),生成ActiveJob,并在消息Bus中发送了JobStart Event,将该Event传递给Bus中的listeners。(关于消息Bus可以参考Spark消息总线实现),最后执行submitStage方法提交Stage。该方法的核心部分是createResultStage和submitStage。

创建ResultStage

创建resultStage的前提是首先创建其依赖的parent Stage,然后创建resultStage。

  private def createResultStage(
      rdd: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      jobId: Int,
      callSite: CallSite): ResultStage = {
    val parents = getOrCreateParentStages(rdd, jobId)
    val id = nextStageId.getAndIncrement()
    val stage = new ResultStage(id, rdd, func, partitions, parents, jobId, callSite)
    stageIdToStage(id) = stage
    updateJobIdStageIdMaps(jobId, stage)
    stage
  }

创建parent stage的源码如下,该方法遍历当前RDD的ShuffleDependencies,并为每一个ShuffleDependencies的RDD创建ShuffleMapStage

private def getOrCreateParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = {
    getShuffleDependencies(rdd).map { shuffleDep =>
      getOrCreateShuffleMapStage(shuffleDep, firstJobId)
    }.toList
  }
  private[scheduler] def getShuffleDependencies(
      rdd: RDD[_]): HashSet[ShuffleDependency[_, _, _]] = {
    val parents = new HashSet[ShuffleDependency[_, _, _]]
    val visited = new HashSet[RDD[_]]
    val waitingForVisit = new ArrayStack[RDD[_]]
    waitingForVisit.push(rdd)
    while (waitingForVisit.nonEmpty) {
      val toVisit = waitingForVisit.pop()
      if (!visited(toVisit)) {
        visited += toVisit
        toVisit.dependencies.foreach {
          case shuffleDep: ShuffleDependency[_, _, _] =>
            parents += shuffleDep
          case dependency =>
            waitingForVisit.push(dependency.rdd)
        }
      }
    }
    parents
  }
  private def getOrCreateShuffleMapStage(
      shuffleDep: ShuffleDependency[_, _, _],
      firstJobId: Int): ShuffleMapStage = {
    shuffleIdToMapStage.get(shuffleDep.shuffleId) match {
      case Some(stage) =>
        stage

      case None =>
        
     getMissingAncestorShuffleDependencies(shuffleDep.rdd).foreach { dep =>
       
          if (!shuffleIdToMapStage.contains(dep.shuffleId)) {
            createShuffleMapStage(dep, firstJobId)
          }
        }
        createShuffleMapStage(shuffleDep, firstJobId)
    }
  }
 private def getMissingAncestorShuffleDependencies(
     rdd: RDD[_]): ArrayStack[ShuffleDependency[_, _, _]] = {
   val ancestors = new ArrayStack[ShuffleDependency[_, _, _]]
   val visited = new HashSet[RDD[_]]
   // We are manually maintaining a stack here to prevent StackOverflowError
   // caused by recursively visiting
   val waitingForVisit = new ArrayStack[RDD[_]]
   waitingForVisit.push(rdd)
   while (waitingForVisit.nonEmpty) {
     val toVisit = waitingForVisit.pop()
     if (!visited(toVisit)) {
       visited += toVisit
       getShuffleDependencies(toVisit).foreach { shuffleDep =>
         if (!shuffleIdToMapStage.contains(shuffleDep.shuffleId)) {
           ancestors.push(shuffleDep)
           waitingForVisit.push(shuffleDep.rdd)
         } // Otherwise, the dependency and its ancestors have already been registered.
       }
     }
   }
   ancestors
 }

前面讲了太多的函数之间的调用关系,总之就是在生成ResultStage前必须先生成其依赖的ShuffleMapStage,下面这张图是一个总结:


生成Stage的调用关系图

提交Stage

在根据RDD之间的依赖关系生成Stage之后,接下来就需要将Stage提交到TaskScheduler并执行。
这段代码首先获取其依赖的parentStage,若没有依赖的missing parentStage这里missing是指没有被缓存,且Stage的isAvailable为false)则直接提交当前的Stage,否则将还没有执行的parentStage按照依赖先后顺序递归提交,并将当前的Stage加入到等待队列waitingStages中。

  private def submitStage(stage: Stage) {
    val jobId = activeJobForStage(stage)
    if (jobId.isDefined) {
      if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
        val missing = getMissingParentStages(stage).sortBy(_.id)
        if (missing.isEmpty) {
          submitMissingTasks(stage, jobId.get)
        } else {
          for (parent <- missing) {
            submitStage(parent)
          }
          waitingStages += stage
        }
      }
    } else {
      abortStage(stage, "No active job for stage " + stage.id, None)
    }
  }

获取依赖的missing parentStage的主逻辑在getMissingParentStages里面,该方法定义了一个visit方法以广度优先的方式遍历该Stage依赖的RDD,如果访问的RDD已经缓存,则无需再计算其parent Stage,否则需要根据Dependency的关系继续遍历其parent RDD。

private def getMissingParentStages(stage: Stage): List[Stage] = {
    val missing = new HashSet[Stage]
    val visited = new HashSet[RDD[_]]
     val waitingForVisit = new ArrayStack[RDD[_]]
    def visit(rdd: RDD[_]) {
      if (!visited(rdd)) {
        visited += rdd
        val rddHasUncachedPartitions = getCacheLocs(rdd).contains(Nil)
        if (rddHasUncachedPartitions) {
          for (dep <- rdd.dependencies) {
            dep match {
              case shufDep: ShuffleDependency[_, _, _] =>
                val mapStage = getOrCreateShuffleMapStage(shufDep, stage.firstJobId)
                if (!mapStage.isAvailable) {
                  missing += mapStage
                }
              case narrowDep: NarrowDependency[_] =>
                waitingForVisit.push(narrowDep.rdd)
            }
          }
        }
      }
    }
    waitingForVisit.push(stage.rdd)
    while (waitingForVisit.nonEmpty) {
      visit(waitingForVisit.pop())
    }
    missing.toList
  }

提交Missing Task的逻辑包括:

    val taskIdToLocations: Map[Int, Seq[TaskLocation]] = try {
      stage match {
        case s: ShuffleMapStage =>
          partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap
        case s: ResultStage =>
          partitionsToCompute.map { id =>
            val p = s.partitions(id)
            (id, getPreferredLocs(stage.rdd, p))
          }.toMap
      }
    } 
 val taskBinaryBytes: Array[Byte] = stage match {
        case stage: ShuffleMapStage =>
          JavaUtils.bufferToArray(
            closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef))
        case stage: ResultStage =>
          JavaUtils.bufferToArray(closureSerializer.serialize((stage.rdd, stage.func): AnyRef))
      }
taskBinary = sc.broadcast(taskBinaryBytes)
val tasks: Seq[Task[_]] = try {
      val serializedTaskMetrics = closureSerializer.serialize(stage.latestInfo.taskMetrics).array()
      stage match {
        case stage: ShuffleMapStage =>
          stage.pendingPartitions.clear()
          partitionsToCompute.map { id =>
            val locs = taskIdToLocations(id)
            val part = stage.rdd.partitions(id)
            stage.pendingPartitions += id
            new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
              taskBinary, part, locs, properties, serializedTaskMetrics, Option(jobId),
              Option(sc.applicationId), sc.applicationAttemptId)
          }

        case stage: ResultStage =>
          partitionsToCompute.map { id =>
            val p: Int = stage.partitions(id)
            val part = stage.rdd.partitions(p)
            val locs = taskIdToLocations(id)
            new ResultTask(stage.id, stage.latestInfo.attemptId,
              taskBinary, part, locs, id, properties, serializedTaskMetrics,
              Option(jobId), Option(sc.applicationId), sc.applicationAttemptId)
          }
      }
    }

*通过TaskScheduler提交Tasks

taskScheduler.submitTasks(new TaskSet(
        tasks.toArray, stage.id, stage.latestInfo.attemptId, jobId, properties))

*提交等待的子Stage

   submitWaitingChildStages(stage)

关于这些步骤的细节将在后续章节深入展开,包括获取Partition的最优位置,TaskScheduler提交Task等。

总结

本文重点讲述了DAGScheduler中的几个概念,Job,Stage,Task,以及DAGScheduler根据RDD之间的依赖关系划分Stage的过程。
一个Job包含一个或多个Stage,一个Stage可以在一个或多个Job之间共享,Stage之间是以RDD的ShuffleDependency为划分界限的。每一个Stage可包含一个或者多个Task,每一个Task对应一个Stage的RDD中尚未计算的一个Partition。

上一篇下一篇

猜你喜欢

热点阅读