导数相关知识总结

2021-05-06  本文已影响0人  Super小牛

基本初等函数的导数

{(C)}'=0
{(x^{n})}'=nx^{n-1}
{(a^{x})}'=a^{x}\ln(a)
{(e^{x})}'=e^{x}
{(\log(a^{x}))}'=\frac{1}{x\ln(a)}
{(\ln(x))}'=\frac{1}{x}
{(\sin(x))}'=\cos(x)
{(\cos(x))}'=-\sin(x)
{(\tan(x))}'=\sec^{2}(x)
{(\cot(x))}'=-\csc^{2}(x)
{(\sec(x))}'=\sec(x)\tan(x)
{(\csc(x))}'=-\csc(x)\cot(x)
{(\arcsin(x))}'=\frac{1}{ \sqrt{1-x^{2}}}
{(\arccos(x))}'=-\frac{1}{ \sqrt{1-x^{2}}}
{(\arctan(x))}'=\frac{1}{1+x^{2}}
{(\arccot(x))}'=- \frac{1}{1+x^{2}}

复合函数求导(一层一层的剥)

\Big({f\big(g(x)\big)}\Big)' = f'\big(g(x)\big)*g'(x)
\bigg(f\Big(g\big(h(x)\big)\Big)\bigg)'=f'\Big(g\big(h(x)\big)\Big)*g'\big(h(x)\big)*h'(x)

导数的四则运算

u=u(x) 和v=v(x)都可导,则

(u\pm v)' = u'\pm v'
(Cu)'=Cu' (C是常数)
(uv)' = u'v+uv'
(\frac{u}{v})' =\frac{u'v+uv'}{v^{2}}

上一篇下一篇

猜你喜欢

热点阅读