Metal

Metal:MTLBuffer处理顶点数据

2020-08-26  本文已影响0人  MonKey_Money

前言

- (void)setVertexBytes:(const void *)bytes length:(NSUInteger)length atIndex:(NSUInteger)index

前面我们使用setVertexBytes方法加载顶点数据,但是这个方法有限制,

Use this method for single-use data smaller than 4 KB. Create a MTLBuffer object if your data exceeds 4 KB in length or persists for multiple uses.

如果顶点数据大于4kB,apple建议使用MTLBuffer。本编就是使用MTLBuffer完成图形渲染


image.png

流程图如下


Untitled Diagram.png

MTKView初始化

//初始化MTKView并设置GPU的Device
 _mtkView = [[MTKView alloc] initWithFrame:self.view.bounds device:MTLCreateSystemDefaultDevice()];
//2.创建CCRender
    _render = [[MyRender alloc] initWithMetalView:_mtkView];
//设置代理
    _mtkView.delegate = _render;
    [self.view addSubview:_mtkView];
用视图大小初始化渲染器
    [_render mtkView:_mtkView drawableSizeWillChange:_mtkView.drawableSize];

MyRender初始化

//获得GPU设备
 _device = mtkView.device;
   //1.设置绘制纹理的像素格式
    mtkView.colorPixelFormat = MTLPixelFormatBGRA8Unorm_sRGB;
    
    //2.从项目中加载所以的.metal着色器文件
    id<MTLLibrary> defaultLibrary = [_device newDefaultLibrary];
    //从库中加载顶点函数
    id<MTLFunction> vertexFunction = [defaultLibrary newFunctionWithName:@"vertexShader"];
    //从库中加载片元函数
    id<MTLFunction> fragmentFunction = [defaultLibrary newFunctionWithName:@"fragmentShader"];
    
    //3.配置用于创建管道状态的管道
    MTLRenderPipelineDescriptor *pipelineStateDescriptor = [[MTLRenderPipelineDescriptor alloc] init];
    //管道名称
    pipelineStateDescriptor.label = @"Simple Pipeline";
    //可编程函数,用于处理渲染过程中的各个顶点
    pipelineStateDescriptor.vertexFunction = vertexFunction;
    //可编程函数,用于处理渲染过程总的各个片段/片元
    pipelineStateDescriptor.fragmentFunction = fragmentFunction;
    //设置管道中存储颜色数据的组件格式
    pipelineStateDescriptor.colorAttachments[0].pixelFormat = mtkView.colorPixelFormat; 
    //4.同步创建并返回渲染管线对象
    NSError *error = NULL;
    _pipelineState = [_device newRenderPipelineStateWithDescriptor:pipelineStateDescriptor
                                                             error:&error];
    //判断是否创建成功
    if (!_pipelineState)
    {
        NSLog(@"Failed to created pipeline state, error %@", error);
    }
    
    //5.获取顶点数据
    NSData *vertexData = [CCRenderer generateVertexData];
    //创建一个vertex buffer,可以由GPU来读取
    _vertexBuffer = [_device newBufferWithLength:vertexData.length
                                         options:MTLResourceStorageModeShared];
    //复制vertex data 到vertex buffer 通过缓存区的"content"内容属性访问指针
    /*
     memcpy(void *dst, const void *src, size_t n);
     dst:目的地
     src:源内容
     n: 长度
     */
    memcpy(_vertexBuffer.contents, vertexData.bytes, vertexData.length);
    //计算顶点个数 = 顶点数据长度 / 单个顶点大小
    _numVertices = vertexData.length / sizeof(CCVertex);
    
    //6.创建命令队列
    _commandQueue = [_device newCommandQueue];

绘制代码

//每当视图需要渲染帧时调用
- (void)drawInMTKView:(nonnull MTKView *)view
{
    //1.为当前渲染的每个渲染传递创建一个新的命令缓冲区
    id<MTLCommandBuffer> commandBuffer = [_commandQueue commandBuffer];
    //指定缓存区名称
    commandBuffer.label = @"MyCommand";
    
    //2. MTLRenderPassDescriptor:一组渲染目标,用作渲染通道生成的像素的输出目标。
    //currentRenderPassDescriptor 从currentDrawable's texture,view's depth, stencil, and sample buffers and clear values.
    MTLRenderPassDescriptor *renderPassDescriptor = view.currentRenderPassDescriptor;
    //判断渲染目标是否为空
    if(renderPassDescriptor != nil)
    {
         //创建渲染命令编码器,这样我们才可以渲染到something
        id<MTLRenderCommandEncoder> renderEncoder =
        [commandBuffer renderCommandEncoderWithDescriptor:renderPassDescriptor];
        //渲染器名称
        renderEncoder.label = @"MyRenderEncoder";
        
        //3.设置我们绘制的可绘制区域
        /*
         typedef struct {
         double originX, originY, width, height, znear, zfar;
         } MTLViewport;
         */
        [renderEncoder setViewport:(MTLViewport){0.0, 0.0, _viewportSize.x, _viewportSize.y, -1.0, 1.0 }];
        
        //4. 设置渲染管道
        [renderEncoder setRenderPipelineState:_pipelineState];
        
        //5.我们调用-[MTLRenderCommandEncoder setVertexBuffer:offset:atIndex:] 为了从我们的OC代码找发送数据预加载的MTLBuffer 到我们的Metal 顶点着色函数中
        /* 这个调用有3个参数
            1) buffer - 包含需要传递数据的缓冲对象
            2) offset - 它们从缓冲器的开头字节偏移,指示“顶点指针”指向什么。在这种情况下,我们通过0,所以数据一开始就被传递下来.偏移量
            3) index - 一个整数索引,对应于我们的“vertexShader”函数中的缓冲区属性限定符的索引。注意,此参数与 -[MTLRenderCommandEncoder setVertexBytes:length:atIndex:] “索引”参数相同。
         */
        
        //将_vertexBuffer 设置到顶点缓存区中
        [renderEncoder setVertexBuffer:_vertexBuffer
                                offset:0
                               atIndex:CCVertexInputIndexVertices];
        
        //将 _viewportSize 设置到顶点缓存区绑定点设置数据
        [renderEncoder setVertexBytes:&_viewportSize
                               length:sizeof(_viewportSize)
                              atIndex:CCVertexInputIndexViewportSize];
        
        //6.开始绘图
        // @method drawPrimitives:vertexStart:vertexCount:
        //@brief 在不使用索引列表的情况下,绘制图元
        //@param 绘制图形组装的基元类型
        //@param 从哪个位置数据开始绘制,一般为0
        //@param 每个图元的顶点个数,绘制的图型顶点数量
        /*
         MTLPrimitiveTypePoint = 0, 点
         MTLPrimitiveTypeLine = 1, 线段
         MTLPrimitiveTypeLineStrip = 2, 线环
         MTLPrimitiveTypeTriangle = 3,  三角形
         MTLPrimitiveTypeTriangleStrip = 4, 三角型扇
         */
        [renderEncoder drawPrimitives:MTLPrimitiveTypeTriangle
                          vertexStart:0
                          vertexCount:_numVertices];
        
        //7/表示已该编码器生成的命令都已完成,并且从NTLCommandBuffer中分离
        [renderEncoder endEncoding];
        
        //8.一旦框架缓冲区完成,使用当前可绘制的进度表
        [commandBuffer presentDrawable:view.currentDrawable];
    }
    
    //9.最后,在这里完成渲染并将命令缓冲区推送到GPU
    [commandBuffer commit];
}

枚举值

#include <simd/simd.h>

// 缓存区索引值 共享与 shader 和 C 代码 为了确保Metal Shader缓存区索引能够匹配 Metal API Buffer 设置的集合调用
typedef enum CCVertexInputIndex
{
    //顶点
    CCVertexInputIndexVertices     = 0,
    //视图大小
    CCVertexInputIndexViewportSize = 1,
} CCVertexInputIndex;

//结构体: 顶点/颜色值
typedef struct
{
    // 像素空间的位置
    // 像素中心点(100,100)
    //float float
    vector_float2 position;
    // RGBA颜色
    //float float float float
    vector_float4 color;
} CCVertex;

Metal 代码

#import "CCShaderTypes.h"

// 顶点着色器输出和片段着色器输入
//结构体
typedef struct
{
    //处理空间的顶点信息
    float4 clipSpacePosition [[position]];
    
    //颜色
    float4 color;
    
} RasterizerData;

//顶点着色函数
vertex RasterizerData
vertexShader(uint vertexID [[vertex_id]],
             constant CCVertex *vertices [[buffer(CCVertexInputIndexVertices)]],
             constant vector_uint2 *viewportSizePointer [[buffer(CCVertexInputIndexViewportSize)]])
{
    /*
     处理顶点数据:
     1) 执行坐标系转换,将生成的顶点剪辑空间写入到返回值中.
     2) 将顶点颜色值传递给返回值
     */
    
    //定义out
    RasterizerData out;
    
    //初始化输出剪辑空间位置
    out.clipSpacePosition = vector_float4(0.0, 0.0, 0.0, 1.0);
    
    // 索引到我们的数组位置以获得当前顶点
    // 我们的位置是在像素维度中指定的.
    float2 pixelSpacePosition = vertices[vertexID].position.xy;
    
    //将vierportSizePointer 从verctor_uint2 转换为vector_float2 类型
    vector_float2 viewportSize = vector_float2(*viewportSizePointer);
    
    //每个顶点着色器的输出位置在剪辑空间中(也称为归一化设备坐标空间,NDC),剪辑空间中的(-1,-1)表示视口的左下角,而(1,1)表示视口的右上角.
    //计算和写入 XY值到我们的剪辑空间的位置.为了从像素空间中的位置转换到剪辑空间的位置,我们将像素坐标除以视口的大小的一半.
    out.clipSpacePosition.xy = pixelSpacePosition / (viewportSize / 2.0);
    
    //把我们输入的颜色直接赋值给输出颜色. 这个值将于构成三角形的顶点的其他颜色值插值,从而为我们片段着色器中的每个片段生成颜色值.
    out.color = vertices[vertexID].color;
    
    //完成! 将结构体传递到管道中下一个阶段:
    return out;
}

//当顶点函数执行3次,三角形的每个顶点执行一次后,则执行管道中的下一个阶段.栅格化/光栅化.


// 片元函数
//[[stage_in]],片元着色函数使用的单个片元输入数据是由顶点着色函数输出.然后经过光栅化生成的.单个片元输入函数数据可以使用"[[stage_in]]"属性修饰符.
//一个顶点着色函数可以读取单个顶点的输入数据,这些输入数据存储于参数传递的缓存中,使用顶点和实例ID在这些缓存中寻址.读取到单个顶点的数据.另外,单个顶点输入数据也可以通过使用"[[stage_in]]"属性修饰符的产生传递给顶点着色函数.
//被stage_in 修饰的结构体的成员不能是如下这些.Packed vectors 紧密填充类型向量,matrices 矩阵,structs 结构体,references or pointers to type 某类型的引用或指针. arrays,vectors,matrices 标量,向量,矩阵数组.
fragment float4 fragmentShader(RasterizerData in [[stage_in]])
{
    //返回输入的片元颜色
    return in.color;
}

demo

上一篇下一篇

猜你喜欢

热点阅读