煤气化

2018-03-23  本文已影响0人  辰龙_c514

第三章 煤气的输送和焦油雾的清除

第一节  煤气输送系统

煤气由炭化室出来经集气管、吸气管、冷却及煤气净化、化学产品回收设备直到煤气贮罐或送回焦炉或到下游用户,要通过很长的管路及各种设备。为了克服这些设备和管道阻力及保持足够的煤气剩余压力,需设置煤气鼓风机。同时,在确定化产回收工艺流程及选用设备时,除考虑工艺要求外,还应该使整个系统煤气输送阻力尽可能小,以减少鼓风机的动力消耗。

一、煤气输送系统及阻力

  煤气输送系统的阻力,因回收工艺流程及所用设备的不同而有较大差异,同时也因煤气净化程度的不同及是否有堵塞情况而有较大波动。

鼓风机一般设置在初冷器后面。这样,鼓风机吸入的煤气体积小,负压下操作的设备和煤气管道少。有的焦化厂将油洗萘塔及电捕焦油器设在鼓风机前,进入鼓风机的煤气中焦油、萘含量少,可减轻鼓风机及以后设备堵塞,有利于化学产品回收和煤气净化。

二、煤气输送管路 

煤气管道管径的选用和管件设置是否合理及操作是否正常,对焦化厂生产具有重要意义。煤气输送管路一般分为出炉煤气管路(炼焦车间吸气管至煤气净化的最后设备)和回炉煤气管路;若焦炉用高炉煤气加热,还有自炼铁厂至炼焦焦炉的高炉煤气管路。这些管路的合理设置与维护都是至关重要的。

1.煤气管道的管径选择

  选用的煤气流速大时,管道直径可减小,钢材耗量也相应降低,节省基建投资,但这会使管路阻力增大,因而鼓风机的动力消耗也随之增大;当流速小时,情况则相反。所以,所选用的适宜流速应该是折旧费、维修费和操作费构成的总费用最低

广告

去逛逛

2. 煤气管道应有一定的倾斜度,以保证冷凝液按预定方向自流。吸气主管顺煤气流向倾斜度10‰,鼓风机前后煤气管道顺煤气流向倾斜度为5‰,逆煤气流向为7‰,饱和器后至粗苯工序前煤气管道逆煤气流向倾斜度为7~15‰。

3. 管路的热延伸和补偿

管路随季节的变化以及管内介质和保温情况的不同,都有温度的变化。当温度升高和降低时,管路必然发生膨胀或收缩变化,变化的数值可由计算得出。

在焦炉煤气管道上一般采用填料函式补偿器,在高炉煤气管道上一般采用鼓式补偿器。直径较小的煤气管道可用U管自动补偿,对于小型焦化厂的煤气管道,由于直径较小、转弯较多等特点,则可以充分利用弯管的自动补偿。

4.安装自动放散装置

5.其他辅助设施 

 

第二节 鼓风机及其操作性能

一、离心式鼓风机     

  1.离心式鼓风机的构造及工作原理

  离心式鼓风机又称涡轮式或透平式鼓风机,由电动机或汽轮机驱动。其构造如图3—2所示,离心式鼓风机由导叶轮,外壳和安装在轴上的两个工作叶轮组成。

    煤气由吸入口进入高速旋转的第一工作叶轮,在离心力的作用下,增加了动能并被甩向叶轮外面的环形空隙,于是在叶轮中心处形成负压,煤气即被不断吸入。由叶轮甩出的煤气速度很高,当进入环形空隙后速度减小,其部分动能变成静压能,并沿导叶轮通道进入第二叶轮,产生与第一叶轮及环隙相同的作用,煤气的静压能再次得到提高,经出口连接管被送入管路中。煤气的压力是在转子的各个叶轮作用下.并经过能量转换而得到提高。

显然,叶轮的转速越高,煤气的密度越大,作用于煤气的离心力即越大,则出口煤气的压力也就越高。

2.鼓风机输气能力及轴功率的计算

3.煤气在鼓风机中的温升 

  在离心式鼓风机内,煤气被压缩所产生的热量,绝大部分被煤气吸收,只有小部分热量散失。因此,煤气在鼓风机内的压缩过程可以近似地视为绝热过程。

二. 离心式鼓风机的性能与调节

  焦化厂中鼓风机操作非常重要,既要输送煤气,,又要保持炭化室和集气管的压力稳定。在正常生产情况下,集气管压力用压力自动调节机调节,但当调节范围不能满足生产变化的要求时,即须对鼓风机操作进行必要的调整鼓风机在一定转速下的生产能力与总压头之间有一定的关系,可用图3-3所示鼓风机Q—H特性曲线来表示。

曲线有一最高点B,相应于B点压头(最高压头)的输送量称为临界输送量。鼓风机不允许在B点的左侧范围内操作,因在此范围内鼓风机输送量波动,并会发生振动,产生“飞动”现象。只有在B点右侧延伸的特性曲线范围内操作才是稳定的。所以,B点右侧的特性曲线范围是鼓风机的稳定工作区,B点的左侧为鼓风机的不稳定工作区。

  当鼓风机的运行工况改变时,要用调节的手段使鼓风机处于稳定工作区,维护其稳定运行。常用的调节方法有以下几种:

  (1)改变转速。当改变鼓风机转速时,流量与性能曲线相应改变。此法调节范围宽,经济性好,是离心式鼓风机的最佳调节手段。

(2)进口节流。调节鼓风机吸入口的阀门开度时,鼓风机的特性曲线随之改变。如图3-5所示 ,当吸入开闭器的开度变小时,鼓风机的不稳定工作范围随之变小,鼓风机的输送能力及总压头也均相应减小。此调节方法简单,适用于固定转速机组的调节,但由于鼓风机前吸力增大,会使压缩比(P2/P1)变大,则鼓风机轴功率消耗及煤气温升增高,故较少采用此法。

(3)出口节流。调节鼓风机出口的阀门开度,调节方法简单,但经济性差,适用于小功率机组的调节。

电动鼓风机如果用出入口开闭器进行调节时,应特别注意鼓风机电机电流的变化,一般操作电流不应小于电机额定电流的60%,以防止发生“飞动”现象。

  (4) 交通管调节。当煤气流量减少时,调节交通管的阀门开闭度,使一部分出口煤气返回吸入口,以维持鼓风机的正常运行。交通管调节有“大循环”和“小循环”两种方式。

当鼓风机能力较大,而输送的煤气量较小时,为保证鼓风机工作稳定,可用如图3-6所示的小循环管来调节鼓风机的操作,按调节阀门的开度大小,使由鼓风机压出的煤气部分重新回到吸入管,这种方法称为“小循环”调节。

当焦炉刚开工投产或因故大幅度延长结焦时间时煤气发生量过少,低于“小循环”调的限度时,则易采用“大循环”调节方法。

  如图3-7所示,“大循环”调节就是通过“大循环”调节阀门将鼓风机压出的部分煤气经煤气大循环管送到初冷器前的煤气管道中,经过冷却后,再回到鼓风机去。根据实际生产经验获知,当煤气量为鼓风机额定能力的1/4~1/3时,就需采用煤气“大循环”调节措施。显然“大循环”调节方法可较好地解决煤气温升过高的问题,但同样要增加鼓风机能量的消耗,同时会增加初冷器的负荷及冷却水的用量。如果进入鼓风机的煤气量过小时,经过风机多次循环后,鼓风机后煤气温度仍会发生升温过高,这时应适当调整鼓风机煤气出口开闭器开度,以防轴瓦损坏。

三、 罗茨式鼓风机

罗茨鼓风机有一铸铁外壳,壳内装有两个“8”字形的用铸铁或铸钢制成的空心转子,并将气缸分成两个工作室。两个转子装在两个互相平行的轴上,在这两个轴上又各装有一个互相咬合、大小相同的齿轮,当电动机经由皮带轮带动主轴转子时,主轴上的齿轮又带动了从动轴上的齿轮,所以两个转子做相对反向转动,此时一个工作室吸入气体,由转子推入另一个工作室而将气体压出。每个转子与机壳内壁及与另一个转子表面均需紧密配合,其间隙一般为0.25~0.40mm。

第四节  煤气中焦油雾的清除

一、煤气中焦油雾的形成和清除目的

  煤气中的焦油雾是在煤气冷却过程中形成的。荒煤气中所含焦油蒸气80~120g/m3,在初冷过程中,除有绝大部分冷凝下来形成焦油液体外,还会形成焦油雾,以内充煤气的焦油气泡状态或极细小的焦油滴(φ1~17μm)存在于煤气中。由于焦油雾滴又轻又小,其沉降速度小于煤气运行速度,因而悬浮于煤气中并被煤气带走。

初冷器后煤气中焦油雾的含量一般为2~5g/m3(立管初冷器后)或1.0~2.5g/m3(横管冷却器后或直接冷却塔后)。煤气中焦油雾需较彻底地清除,否则对化产回收操作产生严重影响。

焦油雾在饱和器凝结下来,会使硫铵质量变坏,酸焦油增多,并可能使母液起泡沫,降低母液密度,而使煤气有从饱和器满流槽中冲出的危险;.焦油雾进入洗苯塔内,会使洗油质量变坏,影响粗苯的回收;当煤气进行脱除硫化氢时,焦油雾会使脱硫塔脱硫效率降低,对水洗氨系统,焦油雾会造成煤气脱萘效果差和洗氨塔的堵塞。因此,必须采用专门的设备予以清除,化产回收工艺要求煤气中所含焦油量最好低于0.02g/m3。从焦油雾滴的大小及所要求的净化程度来看,采用电捕焦油器最为经济可靠。

二、电捕焦油器 

  1. 电捕焦油器的工作原理    根据板状电容的物理原理,如在两金属板间维持很强的电场,使含有尘灰或雾滴的气体通过其间,气体分子发生电离,生成带有正电荷或负电荷的离子,于是正离子向阴极移动,负离子向阳极移动。当电位差很高时,具有很大速度(超过临界速度)和动能的离子和电子与中性分子碰撞而产生新的离子(即发生碰撞电离),使两极间大量气体分子均发生电离作用。离子与雾滴的质点相遇而附于其上,使质点带有电荷,即可被电极吸引而从气体中除去。但金属平板形成的是均匀电场,当电压增大到超过绝缘电阻时,两极之间便会产生火花放电,这不仅会引致电能损失,且能破坏净化操作。

为了避免火花放电或发生电弧,应采用如图3-9(a ) 、(b)、(c)所示的不均匀电场。图中(a)为均匀电场;(b)为管式电捕焦油器所采用的不均匀电场,用金属圆管和沿管中心安装的拉紧导线作为正、负电极;  (c)为环板式电捕焦油器采用的不均匀电场,是以同心圆环形金属板和设置其间的金属导线作为正负电极。

在不均匀电场中,当两极间电位差增高时,电流强度并不发,生急剧的变化。这是因在导线附近的电场强度很大,导线附近的离子能以较大的速度运动,使被碰撞的煤气分子离子化,而离导线中心较远处,电场强度小,离子的速度和动能不能使相遇的分子离子化,因而绝缘电阻只在—导线附近电场强度最大处发生击穿,即形成局部电离放电现象,这种现象称为电晕现象,导线周围产生电晕现象的空间称为电晕区,导线既成为电晕极。

由于在电晕区内发生急剧的碰撞电离,形成了大量正、负离子。负离子的速度比正离子大(为正离子的1.37倍),所以电晕极常取为负极,圆管或环形金属板则取为正极,因而速度大的负离子即向管壁或金属板移动,正离子则移向电晕极。在电晕区内存在两种离子,而电晕区外只有负离子,因而在电捕焦油器的大部分空间内,焦油雾滴只能成为带有负电荷的质点而向管壁或板壁移动。由于圆管或金属板是接地的,荷电焦油质点到达管壁或板壁时,既放电而沉淀于板壁上,故正极也称为沉淀极。

由于存在正离子的电晕区很小,且电晕区内正负离子有中和作用,所以电晕极上沉积的焦油量很少,绝大部分焦油雾均在沉淀极沉积下来。煤气离子经在两极放电后,则重新转变成煤气分子,从电捕焦油器中逸出。

  初冷器后煤气中绝大部分焦油是以焦油雾的状态存在的,所以在电捕焦油器正常操作情况下,煤气中焦油雾可被除去99%左右。

上一篇下一篇

猜你喜欢

热点阅读