程序员

DeepWalk学习

2020-08-31  本文已影响0人  沁泽呀

DeepWalk

Background

使用机器学习的算法解决问题需要有大量的信息,但是现实世界中的网络中的信息往往比较少,这就导致传统机器学习算法不能在网络中广泛使用

Ps: 传统机器学习分类问题是学习一种假设,将样本的属性映射到样本的类标签,但是现实网络中的结点属性信息往往比较少,所以传统机器学习方法不适用与网络。)


Introduce

deepWalk是网络表征学习的比较基本的算法,用于学习网络中顶点的向量表示(即学习图的结构特征即属性,并且属性个数为向量的维数),使得能够应用传统机器学习算法解决相关的问题。


Algorithm Theory


Advantage


Experiment

本次实验在人工网络上进行(平均度为20,最大度为50,一个社区小包含结点数minc为10,最大maxc为100),deepwalk参数为默认值,训练向量维数为64。分别在mu(混合度)为0.1,0.2,0.3,0.4,0.5,0.6,并且节点规模N为2k,4k,6k,8k,10k上进行。使用sklearn库的K-means进行聚类,K进行人工调整在实际值,计算每个实验的NMI值。

实验记录

存在问题:

聚类参数k的确定问题对实验的影响很大。

本实验未探究deepwalk参数即训练的向量维数,随机游走长度,迭代次数,skip-gram窗口大小对聚类精度的影响。


本文参考

上一篇 下一篇

猜你喜欢

热点阅读