RNA-seq基因注释/富集分析与功能分类分析方法

功能注释后如何做富集分析

2018-05-28  本文已影响449人  xuzhougeng

功能注释后如何做富集分析

本文是为了回答知识星球里的一个提问,他为了用clusterProfiler做富集分析,打算构建一个OrgDb,也就是物种数据库。

提问

我之前写过用Bioconductor对基因组注释,用Bioconductor/AnnotationHub对模式植物的基因进行注释。昨天的推送,我讲过新物种的注释基本上都是基于同源相似性搜索数据库完成,最后得到的就是基因名和数据库中注释的对应关系。OrgdbBioconductor计划中其中一环,通过构建一个物种各个数据库注释条目和基因的对应关系数据库,方便在得到基因后对基因进行注释。

enrichGO的前三个参数gene,OrgDb,keyType的目的是利用数据库将基因编号转换成GO号。enrichKEGG的前三个参数gene, organism,keyType 的目的也是为了基于物种名和基因编号直接爬取KEGG,将基因编号转换成KO号。

如果你只是为了做GO和KEGG富集分析,有必要构建物种数据库吗?我的答案是没有必要,因为不构建物种数据库也能够用clusterProfiler做富集分析。

我相信Y叔一定提供了不通过OrgDb,将转换基因编号为GO/KO编号,然后做富集分析的方法,所以我就去翻了Y叔为clusterProfiler写的文档。于是我找到这一篇use clusterProfiler as an universal enrichment analysis tool, 这里面提到了一个通用的函数enricher用于支持新注释物种.

核心参数两个gene,TERM2GENE,前者表示的基因编号,后者是GO/KEGG条目和基因编号的对应关系

enricher(gene, pvalueCutoff = 0.05, pAdjustMethod = "BH", universe,
  minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.2, TERM2GENE,
  TERM2NAME = NA)

由于我只拿到了我的KEGG注释,GO注释还在运行中,这次就以KEGG富集分析作为例子。

我从KEGG上拿到的注释是下面这种情况,很明显,有些基因没有注释。这些没有注释的基因应该如何注释?Y叔的建议是不要,全部丢掉,原因去参考资料中找。

CAROC969890.1
CAROC969900.1   K12736
CAROC969910.1   K02943
CAROC969920.1   K13356
CAROC969930.1
CAROC969940.1
CAROC969950.1
CAROC969960.1
CAROC969970.1
CAROC969980.1

简单的grep就可以完成这个剔除工作,grep K query.ko > kegg.tsv,然后将kegg.tsv导入到我们的R语言中

gene_ko <- read.table("C:/Users/DELL/Desktop/KEGG.tsv", header = FALSE,
                      sep = "\t")

然后我们随机抽样几个基因作为gene输入,同时构建TERM2GENE的输入

term2gene <- data.frame(TERM=gene_ko$V2, GENE=gene_ko$V1)
gene_sample <- sample(gene_ko$V1, 100)
enkegg <- enricher(gene_sample, TERM2GENE = term2gene, pAdjustMethod = "none")

我这里不用多重实验矫正的原因,因为我是随机抽的基因,很有可能是一个富集都找不到。。所以为了后续演示,就把矫正去掉了,真实情况下,你是要的。

参考资料

上一篇下一篇

猜你喜欢

热点阅读