数据结构和算法分析程序员架构算法设计模式和编程理论

递归--例子与简单分析

2017-01-31  本文已影响297人  歌白梨

递归(英语:Recursion),又译为递回,在数学与计算机科学中,是指在函数的定义中使用函数自身的方法。递归一词还较常用于描述以自相似方法重复事物的过程
------------------维基百科

我记得大学计算机结构与算法的一节课上,老师给我们讲解了递归的整个调用过程,印象还挺深刻的,因为老师说,,。递归,就是有递有归,有个问题,我们解决不了,但是我们可以不断的将问题简化成相同问题的子问题,直到子化成我们可以解决的问题,返回一个解决方法,然后这个解决方法可以解决更大的问题并返回一个解决方法,如此反复,大问题就解决了,其实递归是一种解决问题的手段,而这种思想就是分治思想,对工作中生活中解决问题非常有帮助。

递归一般都有一个递归函数,这个函数直接调用自己或者通过一系列的调用语句间接的调用自己,
而函数里边一般都会有两部分,

如果不理解递归,那这个模版也可以套用吧。不过分治的思想真的很重要,需要掌握。

接下来可以分析一些实际的问题来帮助我们更加理解,先从hello world式的N的阶乘开始

//计算n!
//构造一个递归函数,两个部分:
//n=1 的时候,返回1,因为1的阶乘就等于1;
//n!=1 的时候,继续调用自己,计算n-1的阶乘,并返回n \* (n-1)!;
int recursion(int n) {
    if (n == 1) {
        return 1;
    }
    return recursion(n-1)*n;
}

//n>m,有n-m个盘子是空的,这几个盘子不影响结果, fun(m,n)=fun(m,m)
//n<m,
//1,至少一个盘空着:f(m,n)=f(m,n-1)
//2,所有盘都放了苹果:f(m,n)=f(m-n,n)
//结果= 情况1+情况2..
int fun(int m, int n) {
    if(m==0 || n == 1)
        return 1;
    if(n>m) 
        return fun(m,m);
    else 
        return fun(m,n-1)+fun(m-n,n);
}

这个问题应该都很熟悉了,有三个桌子a,b,c, 从a移动n个盘子到c,我们不知道怎么移,但是我们可以把移动n-1个盘子当作一个整体子问题,然后在这个基础上做些移动操作然后完成移动n个盘子的操作。

// 问题hanoi(a,b,c,n):
// 三个操作:
// 把n-1个盘子从a移动到b;           hanoi(a,c,b,n-1)
// 把第n个盘子从a移动到c;            move(a,c)
// 把n-1个盘子从b移动到c;           hanoi(b,a,c,n-1)
void hanoi(char a, int b, int c, int n) {
    if(n == 1) 
        printf("\n%c->%c\n"a,c);
    else { 
        hanoi(n-1,a,c,b);
        printf("\n%c->%c\n"a,c);
        hanoi(n-1,b,a,c);
        }
}
//典型的递归问题
int Fibonacci(int n){
    if (n <= 1)  
        return n;  
    else  
        return Fibonacci(n-1) + Fibonacci(n-2);  
}
//字符串反转输出,其实是利用了递归的从最里层返回的特性
void recursion() {
    char t;
    cin >> t;
    if (t == '1') {
        return;
    }
    if (t != '1') {
        recursion();
        printf("%c",t);
    }
}

递归的简单分析:递归虽然易读,而且简单,但是他的运行效率较低,时间,空间复杂度都比非递归算法要高。因为递归调用实际上是函数自己在调用自己,而函数的调用开销很大,系统要为每次函数调用分配存储空间,并将调用点压栈予以记录。而在函数调用结束后,还要释放空间,弹栈恢复断点。所以说,函数调用不仅浪费空间,还浪费时间。
比如说,求n的阶乘,其实如果使用迭代法来计算的话,他们的时间复杂度都是O(n),但是由于递归会需要多次发生函数调用,所以递归算法来计算的效率还是会低一些的。

上一篇 下一篇

猜你喜欢

热点阅读