Spark Streaming + Kafka
2019-03-29 本文已影响0人
歌哥居士
Kafka Receiver
<!-- Spark Streaming整合Kafka -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
本地测试
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* Spark Streamin对接Kafka的方式一
*/
object KafkaReceiverWordCount {
def main(args: Array[String]): Unit = {
// 检查参数以及初始化
if (args.length != 4) {
System.err.println("Usage: KafkaReceiverWordCount <zkQuorum> <group> <topics> <numThreads>")
}
val Array(zkQuorum, group, topics, numThreads) = args
val conf = new SparkConf()
.setMaster("local[2]")
.setAppName("KafkaReceiverWordCount")
.set("spark.driver.host", "localhost")
val ssc = new StreamingContext(conf, Seconds(5))
// 关键代码
val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
val messages = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap)
messages.map(_._2).flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).print()
// ~
ssc.start()
ssc.awaitTermination()
}
}
运行
先启动zookeeper和kafka
运行时加入参数: host000:2181 group_test hello_test 1
服务端测试
修改代码
// .setMaster("local[2]")
// .setAppName("KafkaReceiverWordCount")
// .set("spark.driver.host", "localhost")
$ mvn clean package -DskipTests
$ scp spark-learning-1.0-SNAPSHOT.jar user000@host000:~/jars
$ spark-submit --master local[2] \
--class KafkaReceiverWordCount \
--packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.1.0 \
~/jars/spark-learning-1.0-SNAPSHOT.jar host000:2181 group_test hello_test 1
Kafka Direct
我的Kafka依赖使用的是0.9.0.0,会报错:kafka.cluster.BrokerEndPoint cannot be cast to kafka.cluster.Broker。所以将Kafka版本改成0.8.2.1。
<!-- Spark Streaming整合Kafka -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
本地测试
import kafka.serializer.StringDecoder
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* Spark Streamin对接Kafka的方式二
*/
object KafkaDirectWordCount {
def main(args: Array[String]): Unit = {
// 检查参数以及初始化
if (args.length != 2) {
System.err.println("Usage: KafkaReceiverWordCount <brokers> <topics>")
System.exit(1)
}
val Array(brokers,topics) = args
val conf = new SparkConf()
.setMaster("local[2]")
.setAppName("KafkaDirectWordCount")
.set("spark.driver.host", "localhost")
val ssc = new StreamingContext(conf, Seconds(5))
// 关键代码
val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers)
val topicsSet = topics.split(",").toSet
val messages = KafkaUtils.createDirectStream
[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)
messages.map(_._2).flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).print()
// ~
ssc.start()
ssc.awaitTermination()
}
}
先启动zookeeper和kafka
运行时加入参数: host000:9092 hello_test
服务端测试
修改代码
// .setMaster("local[2]")
// .setAppName("KafkaDirectWordCount")
// .set("spark.driver.host", "localhost")
$ mvn clean package -DskipTests
$ scp spark-learning-1.0-SNAPSHOT.jar user000@host000:~/jars
$ spark-submit --master local[2] \
--class KafkaDirectWordCount \
--packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.1.0 \
~/jars/spark-learning-1.0-SNAPSHOT.jar host000:9092 hello_test