iOS算法之汉诺塔
法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。
不管这个传说的可信度有多大,如果考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序。这需要多少次移动呢?这里需要递归的方法。假设有n片,移动次数是f(n).显然f(1)=1,f(2)=3,f(3)=7,且f(k+1)=2*f(k)+1。此后不难证明f(n)=2^n-1。n=64时,假如每秒钟一次,共需多长时间呢?一个平年365天有31536000 秒,闰年366天有31622400秒,平均每年31556952秒,计算一下:18446744073709551615秒。
这表明移完这些金片需要5845.54亿年以上,而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年。真的过了5845.54亿年,不说太阳系和银河系,至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭。
问题描述:
有一个梵塔,塔内有三个座A、B、C,A座上有诺干个盘子,盘子大小不等,大的在下,小的在上(如图)。
把这些个盘子从A座移到C座,中间可以借用B座但每次只能允许移动一个盘子,并且在移动过程中,3个座上的盘子始终保持大盘在下,小盘在上。
描述简化:
把A柱上的n个盘子移动到C柱,其中可以借用B柱。
算法分析
A上有n个盘子。
如果n=1,则将圆盘从A直接移动到C。
如果n=2,则:
1)将A上的n-1(等于1)个圆盘移到B上;
2)再将A上的一个圆盘移到C上;
3)最后将B上的n-1(等于1)个圆盘移到C上。
如果n=3,则:
将A上的n-1(等于2,令其为n')个圆盘移到B(借助于C),步骤如下:
1)将A上的n'-1(等于1)个圆盘移到C上。
2)将A上的一个圆盘移到B。
3)将C上的n'-1(等于1)个圆盘移到B。
B将A上的一个圆盘移到C。
C将B上的n-1(等于2,令其为n')个圆盘移到C(借助A),步骤如下:
1)将B上的n'-1(等于1)个圆盘移到A。
2)将B上的一个盘子移到C。
3)将A上的n'-1(等于1)个圆盘移到C。到此,完成了三个圆盘的移动过程。
从上面分析可以看出,当n大于等于2时, 移动的过程可分解为三个步骤:第一步 把A上的n-1个圆盘移到B上;第二步 把A上的一个圆盘移到C上;第三步 把B上的n-1个圆盘移到C上;其中第一步和第三步是类同的。 当n=3时,第一步和第三步又分解为类同的三步,即把n'-1个圆盘从一个针移到另一个针上,这里的n'=n-1。
详细代码请参考Algorithm。参考代码比文字好理解。