java.util.concurrent 包下工具类的使用

2018-04-01  本文已影响0人  zhzhgang

CountDownLacth 的使用

常用于监听某些初始化操作,等初始化执行完毕,通知主线程继续执行。
先看示例代码:

public class UseCountDownLatch {

    public static void main(String[] args) {
        
        final CountDownLatch countDown = new CountDownLatch(2);
        
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    System.out.println("进入线程t1" + "等待其他线程处理完成...");
                    countDown.await();
                    System.out.println("t1线程继续执行...");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        },"t1");
        
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    System.out.println("t2线程进行初始化操作...");
                    Thread.sleep(3000);
                    System.out.println("t2线程初始化完毕,通知t1线程继续...");
                    countDown.countDown();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });
        Thread t3 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    System.out.println("t3线程进行初始化操作...");
                    Thread.sleep(4000);
                    System.out.println("t3线程初始化完毕,通知t1线程继续...");
                    countDown.countDown();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });
        
        t1.start();
        t2.start();
        t3.start();
    }
}

运行结果:

进入线程t1等待其他线程处理完成...
t2线程进行初始化操作...
t3线程进行初始化操作...
t2线程初始化完毕,通知t1线程继续...
t3线程初始化完毕,通知t1线程继续...
t1线程继续执行...

CyclicBarrier

假设有一个场景:每个线程代表一个跑步运动员,当运动员都准备好后,才一起出发,只要有一个没有准备好,大家一起等待。

示例代码:

public class UseCyclicBarrier {

    static class Runner implements Runnable {  
        private CyclicBarrier barrier;  
        private String name;  
        
        public Runner(CyclicBarrier barrier, String name) {  
            this.barrier = barrier;  
            this.name = name;  
        }  
        @Override  
        public void run() {  
            try {  
                Thread.sleep(1000 * (new Random()).nextInt(5));  
                System.out.println(name + " 准备OK.");  
                barrier.await();  
            } catch (InterruptedException e) {  
                e.printStackTrace();  
            } catch (BrokenBarrierException e) {  
                e.printStackTrace();  
            }  
            System.out.println(name + " Go!!");  
        }  
    } 
    
    public static void main(String[] args) throws IOException, InterruptedException {  
        CyclicBarrier barrier = new CyclicBarrier(3);  // 3 
        ExecutorService executor = Executors.newFixedThreadPool(3);  
        
        executor.submit(new Thread(new Runner(barrier, "zhangsan")));  
        executor.submit(new Thread(new Runner(barrier, "lisi")));  
        executor.submit(new Thread(new Runner(barrier, "wangwu")));  
  
        executor.shutdown();  
    }  
  
}

运行结果示例:

lisi 准备OK.
zhangsan 准备OK.
wangwu 准备OK.
wangwu Go!!
lisi Go!!
zhangsan Go!!

Callable 和 Future

Future 模式非常适合在处理很耗时很长的业务逻辑中使用,可以有效地减少系统的响应时间,提高系统的吞吐量。

示例代码:

public class UseFuture implements Callable<String>{
    private String para;
    
    public UseFuture(String para){
        this.para = para;
    }
    
    /**
     * 这里是真实的业务逻辑,其执行可能很慢
     */
    @Override
    public String call() throws Exception {
        //模拟执行耗时
        Thread.sleep(5000);
        String result = this.para + "处理完成";
        return result;
    }
    
    //主控制函数
    public static void main(String[] args) throws Exception {
        String queryStr = "query";
        //构造FutureTask,并且传入需要真正进行业务逻辑处理的类,该类一定是实现了Callable接口的类
        FutureTask<String> future = new FutureTask<String>(new UseFuture(queryStr));
        
        FutureTask<String> future2 = new FutureTask<String>(new UseFuture(queryStr));
        //创建一个固定线程的线程池且线程数为1,
        ExecutorService executor = Executors.newFixedThreadPool(2);
        //这里提交任务future,则开启线程执行RealData的call()方法执行
        //submit和execute的区别: 第一点是submit可以传入实现Callable接口的实例对象, 第二点是submit方法有返回值
        
        Future f1 = executor.submit(future);        //单独启动一个线程去执行的
        Future f2 = executor.submit(future2);
        System.out.println("请求完毕");
        
        try {
            //这里可以做额外的数据操作,也就是主程序执行其他业务逻辑
            System.out.println("处理实际的业务逻辑...");
            Thread.sleep(1000);
        } catch (Exception e) {
            e.printStackTrace();
        }
        //调用获取数据方法,如果call()方法没有执行完成,则依然会进行等待
        System.out.println("数据:" + future.get());
        System.out.println("数据:" + future2.get());
        
        executor.shutdown();
    }

}

运行结果:

请求完毕
处理实际的业务逻辑...
数据:query处理完成
数据:query处理完成

Semaphore

Semaphore 信号量可以控制系统的流量,拿到信号量的线程可以进入,否则就等待。通过 acquire() 和 release() 获取和释放访问许可。

示例代码:

public class UseSemaphore {  
  
    public static void main(String[] args) {  
        // 线程池  
        ExecutorService exec = Executors.newCachedThreadPool();  
        // 只能5个线程同时访问  
        final Semaphore semp = new Semaphore(5);  
        // 模拟20个客户端访问  
        for (int index = 0; index < 20; index++) {  
            final int NO = index;  
            Runnable run = new Runnable() {  
                public void run() {  
                    try {  
                        // 获取许可  
                        semp.acquire();  
                        System.out.println("Accessing: " + NO);  
                        //模拟实际业务逻辑
                        Thread.sleep((long) (Math.random() * 10000));  
                        // 访问完后,释放  
                        semp.release();  
                    } catch (InterruptedException e) {  
                    }  
                }  
            };  
            exec.execute(run);  
        } 
        
        try {
            Thread.sleep(10);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        
        //System.out.println(semp.getQueueLength());
       
        // 退出线程池  
        exec.shutdown();  
    }  
  
}  

运行结果:

Accessing: 0
Accessing: 4
Accessing: 3
Accessing: 2
Accessing: 1
Accessing: 5
Accessing: 6
Accessing: 7
Accessing: 8
Accessing: 9
Accessing: 10
Accessing: 11
Accessing: 12
Accessing: 13
Accessing: 14
Accessing: 15
Accessing: 16
Accessing: 17
Accessing: 18
Accessing: 19

ReentrantLock

重入锁,在需要进行同步的代码部分加上锁定,但不要忘记最后一定要释放锁定,不然会造成锁永远无法释放,其他线程永远进不来的结果。

示例代码:

public class UseReentrantLock {
    
    private Lock lock = new ReentrantLock();
    
    public void method1(){
        try {
            lock.lock();
            System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method1..");
            Thread.sleep(1000);
            System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method1..");
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            
            lock.unlock();
        }
    }
    
    public void method2(){
        try {
            lock.lock();
            System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method2..");
            Thread.sleep(2000);
            System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method2..");
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            
            lock.unlock();
        }
    }
    
    public static void main(String[] args) {

        final UseReentrantLock ur = new UseReentrantLock();
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                ur.method1();
                ur.method2();
            }
        }, "t1");

        t1.start();
        try {
            Thread.sleep(10);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        //System.out.println(ur.lock.getQueueLength());
    }
    
    
}

运行结果:

当前线程:t1进入method1..
当前线程:t1退出method1..
当前线程:t1进入method2..
当前线程:t1退出method2..

在使用 synchronized 时,如果需要在多线程间进行协作工作,则需要 Object 类的 wait() 和 notify()、notifyAll() 方法进行配合工作。

同样,在使用 Lock 的时候,可以使用一个新的等待 / 通知的类,它就是 Condition,Condition 一定是针对具体某一把锁的,也就是只有在锁的基础上才会产生 Condition。

示例代码:

public class UseCondition {

    private Lock lock = new ReentrantLock();
    private Condition condition = lock.newCondition();
    
    public void method1(){
        try {
            lock.lock();
            System.out.println("当前线程:" + Thread.currentThread().getName() + "进入等待状态..");
            Thread.sleep(3000);
            System.out.println("当前线程:" + Thread.currentThread().getName() + "释放锁..");
            condition.await();  // Object wait
            System.out.println("当前线程:" + Thread.currentThread().getName() +"继续执行...");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
    
    public void method2(){
        try {
            lock.lock();
            System.out.println("当前线程:" + Thread.currentThread().getName() + "进入..");
            Thread.sleep(3000);
            System.out.println("当前线程:" + Thread.currentThread().getName() + "发出唤醒..");
            condition.signal();     //Object notify
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
    
    public static void main(String[] args) {
        
        final UseCondition uc = new UseCondition();
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                uc.method1();
            }
        }, "t1");
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                uc.method2();
            }
        }, "t2");
        t1.start();

        t2.start();
    }
    
    
    
}

运行结果:

当前线程:t1进入等待状态..
当前线程:t1释放锁..
当前线程:t2进入..
当前线程:t2发出唤醒..
当前线程:t1继续执行...

可以通过一个 Lock 对象产生多个 Condition 进行多线程间的交互,非常灵活,可以使得部分需要唤醒的线程唤醒,其他线程则继续等待通知。

示例代码:

public class UseManyCondition {

    private ReentrantLock lock = new ReentrantLock();
    private Condition c1 = lock.newCondition();
    private Condition c2 = lock.newCondition();
    
    public void m1(){
        try {
            lock.lock();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m1等待..");
            c1.await();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m1继续..");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
    
    public void m2(){
        try {
            lock.lock();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m2等待..");
            c1.await();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m2继续..");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
    
    public void m3(){
        try {
            lock.lock();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m3等待..");
            c2.await();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m3继续..");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
    
    public void m4(){
        try {
            lock.lock();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "唤醒..");
            c1.signalAll();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
    
    public void m5(){
        try {
            lock.lock();
            System.out.println("当前线程:" +Thread.currentThread().getName() + "唤醒..");
            c2.signal();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
    
    public static void main(String[] args) {
        
        
        final UseManyCondition umc = new UseManyCondition();
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                umc.m1();
            }
        },"t1");
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                umc.m2();
            }
        },"t2");
        Thread t3 = new Thread(new Runnable() {
            @Override
            public void run() {
                umc.m3();
            }
        },"t3");
        Thread t4 = new Thread(new Runnable() {
            @Override
            public void run() {
                umc.m4();
            }
        },"t4");
        Thread t5 = new Thread(new Runnable() {
            @Override
            public void run() {
                umc.m5();
            }
        },"t5");
        
        t1.start(); // c1
        t2.start(); // c1
        t3.start(); // c2
        

        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        t4.start(); // c1
        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        t5.start(); // c2
        
    }
}

运行结果:

当前线程:t1进入方法m1等待..
当前线程:t2进入方法m2等待..
当前线程:t3进入方法m3等待..
当前线程:t4唤醒..
当前线程:t1方法m1继续..
当前线程:t2方法m2继续..
当前线程:t5唤醒..
当前线程:t3方法m3继续..

ReentrantReadWriteLock

读写锁,其核心就是实现读写分离的锁。在高并发访问下,尤其是读多写少的情况下,性能要远高于重入锁。读读共享,写写互斥,读写互斥。

示例代码:

public class UseReentrantReadWriteLock {

    private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
    private ReadLock readLock = rwLock.readLock();
    private WriteLock writeLock = rwLock.writeLock();
    
    public void read(){
        try {
            readLock.lock();
            System.out.println("当前线程:" + Thread.currentThread().getName() + "进入...");
            Thread.sleep(3000);
            System.out.println("当前线程:" + Thread.currentThread().getName() + "退出...");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            readLock.unlock();
        }
    }
    
    public void write(){
        try {
            writeLock.lock();
            System.out.println("当前线程:" + Thread.currentThread().getName() + "进入...");
            Thread.sleep(3000);
            System.out.println("当前线程:" + Thread.currentThread().getName() + "退出...");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            writeLock.unlock();
        }
    }
    
    public static void main(String[] args) {
        
        final UseReentrantReadWriteLock urrw = new UseReentrantReadWriteLock();
        
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                urrw.read();
            }
        }, "t1");
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                urrw.read();
            }
        }, "t2");
        Thread t3 = new Thread(new Runnable() {
            @Override
            public void run() {
                urrw.write();
            }
        }, "t3");
        Thread t4 = new Thread(new Runnable() {
            @Override
            public void run() {
                urrw.write();
            }
        }, "t4");       
        
//      t1.start();
//      t2.start();
        
//      t1.start(); // R 
//      t3.start(); // W
        
        t3.start();
        t4.start(); 
    }
}

运行结果:

当前线程:t3进入...
当前线程:t3退出...
当前线程:t4进入...
当前线程:t4退出...
上一篇下一篇

猜你喜欢

热点阅读