多线程设计模式:第三篇 - 生产者-消费者模式和读写锁模式
一,生产者-消费者模式
生产者-消费者模式是比较常见的一种模式,当生产者和消费者都只有一个的时候,这种模式也被称为 Pipe模式,即管道模式。
生产者-消费者模式中通过 Channel 即通道来互相传递数据,那么数据在通道中以什么样的顺序传递,这里在设计时需要考虑,一般的实现包括如下三种方式:
- 队列——顺序传递
- 栈——倒序传递
- 优先队列——根据权重/优先权来传递
Channel 通道可以通过 juc 包中的 BlockingQueue 来实现,这样省去了自己实现 Queue 时的 wait/notify 操作。一个简单的生产者-消费者模型举例:在该例子中,生产者是负责生成蛋糕并放到桌子上,消费者就负责从桌子上拿蛋糕吃,这里桌子作为数据传输的通道,其代码实现如下:
/**
* @author koma <komazhang@foxmail.com>
* @date 2018-10-18
*/
public class Table {
private final Queue<String> queue;
private final int count;
public Table(int count) {
this.count = count;
queue = new LinkedList<>();
}
public synchronized void put(String cake) throws InterruptedException {
System.out.println(Thread.currentThread().getName()+" puts "+cake);
while (queue.size() >= count) {
wait();
}
queue.offer(cake);
notifyAll();
}
public synchronized String take() throws InterruptedException {
while (queue.size() <= 0) {
wait();
}
String cake = queue.poll();
notifyAll();
System.out.println(Thread.currentThread().getName()+" takes "+cake);
return cake;
}
}
生产者,消费者以及启动类代码如下:
/**
* @author koma <komazhang@foxmail.com>
* @date 2018-10-18
*/
public class Main {
public static void main(String[] args) {
Table table = new Table(3);
new MakerThread("MakerThread-1", table, 314151).start();
new MakerThread("MakerThread-2", table, 523242).start();
new MakerThread("MakerThread-3", table, 716151).start();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
new EaterThread("EaterThread-1", table, 625341).start();
new EaterThread("EaterThread-2", table, 525349).start();
new EaterThread("EaterThread-3", table, 225841).start();
}
}
public class EaterThread extends Thread {
private final Random random;
private final Table table;
public EaterThread(String name, Table table, long seed) {
super(name);
this.table = table;
this.random = new Random(seed);
}
@Override
public void run() {
try {
while (true) {
String cake = table.take();
Thread.sleep(random.nextInt(1000));
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public class MakerThread extends Thread {
private final Random random;
private final Table table;
private static int id = 0;
public MakerThread(String name, Table table, long seed) {
super(name);
this.table = table;
this.random = new Random(seed);
}
@Override
public void run() {
try {
while (true) {
Thread.sleep(random.nextInt(1000));
String cake = "[ Cake No."+nextId()+" by "+getName()+" ]";
table.put(cake);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
private static synchronized int nextId() {
return id++;
}
}
如果 Table 类选择使用 juc 包中的 BlockingQueue 来实现,则非常简单。常见的 BlockingQueue 包括基于链表实现的 LinkedBlockingQueue,基于数组实现的 ArrayBlockingQueue,以及带有优先级的 PriorityBlockingQueue。这里我们使用基于链表的 BlockingQueue,改写之后代码如下:
/**
* @author koma <komazhang@foxmail.com>
* @date 2018-10-18
*/
public class Table {
private final LinkedBlockingQueue<String> queue;
private final int count;
public Table(int count) {
this.count = count;
queue = new LinkedBlockingQueue<>();
}
public synchronized void put(String cake) throws InterruptedException {
System.out.println(Thread.currentThread().getName()+" puts "+cake);
queue.put(cake);
}
public synchronized String take() throws InterruptedException {
System.out.println(Thread.currentThread().getName()+" takes "+cake);
return queue.take();
}
}
二,读写锁模式
读写锁模式是一种把读操作和写操作分开来考虑的模式,在这种模式下一个实例包括两类锁:读锁和写锁。写锁可由多个线程同时获取,而读锁只能由一个线程同时获取。而且规定在执行写操作时不能进行读写,在执行读操作时不能进行写。
一般来说,执行互斥处理会降低程序性能,但是如果把读写操作分开来考虑则可以提高程序性能。
下面的示例代码,使用读写锁模式来实现对 Data 类的读写操作,其中最关键的是 ReadWriteLock 类,该类使用到了不可变模式。
/**
* @author koma <komazhang@foxmail.com>
* @date 2018-10-18
*/
public class Main {
public static void main(String[] args) {
Data data = new Data(10);
new ReaderThread(data).start();
new ReaderThread(data).start();
new ReaderThread(data).start();
new ReaderThread(data).start();
new ReaderThread(data).start();
new ReaderThread(data).start();
new WriterThread(data, "ABCDEFGHIJKLMNOPQRSTUVWXYZ").start();
new WriterThread(data, "abcdefghijklmnopqrstuvwxyz").start();
}
}
public class Data {
private final char[] buffer;
private final ReadWriteLock lock = new ReadWriteLock();
public Data(int size) {
this.buffer = new char[size];
for (int i = 0; i < size; i++) {
buffer[i] = '*';
}
}
public char[] read() throws InterruptedException {
try {
lock.readLock();
return doRead();
} finally {
lock.readUnlock();
}
}
public void write(char c) throws InterruptedException {
try {
lock.writeLock();
doWrite(c);
} finally {
lock.writeUnlock();
}
}
private void doWrite(char c) {
for (int i = 0; i < buffer.length; i++) {
buffer[i] = c;
slowly();
}
}
private char[] doRead() {
char[] newBuf = new char[buffer.length];
for (int i = 0; i < buffer.length; i++) {
newBuf[i] = buffer[i];
}
slowly();
return newBuf;
}
private void slowly() {
try {
Thread.sleep(50);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public class ReaderThread extends Thread {
private final Data data;
public ReaderThread(Data data) {
this.data = data;
}
@Override
public void run() {
try {
while (true) {
char[] readBuf = data.read();
System.out.println(Thread.currentThread().getName()+" reads "+String.valueOf(readBuf));
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public class WriterThread extends Thread {
private final static Random random = new Random();
private final Data data;
private final String filler;
private int index = 0;
public WriterThread(Data data, String filler) {
this.data = data;
this.filler = filler;
}
@Override
public void run() {
try {
while (true) {
char c = nextChar();
data.write(c);
Thread.sleep(random.nextInt(3000));
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
private char nextChar() {
char c = filler.charAt(index);
index++;
if (index >= filler.length()) {
index = 0;
}
return c;
}
}
public final class ReadWriteLock {
private int readingReaders = 0; //正在执行读操作的线程数
private int waitingWriters = 0; //等待写锁的线程数
private int writingWriters = 0; //正在执行写操作的线程数
private boolean preferWriter = true; //是否写入优先
public synchronized void readLock() throws InterruptedException {
while (writingWriters > 0 || (preferWriter && waitingWriters > 0)) {
wait();
}
readingReaders++;
}
public synchronized void readUnlock() {
readingReaders--;
preferWriter = true;
notifyAll();
}
public synchronized void writeLock() throws InterruptedException {
waitingWriters++;
try {
while (readingReaders > 0 || writingWriters > 0) {
wait();
}
} finally {
waitingWriters--;
}
writingWriters++;
}
public synchronized void writeUnlock() {
writingWriters--;
preferWriter = false;
notifyAll();
}
}
读写锁模式利用了读操作不修改实例状态的特性,这样多个读操作线程之间就不存在冲突,因此不用做同步处理,从而提供程序性能。但是性能的提升不是绝对的,需要实际测量,同时也需要考虑以下两个场景要求:
- 读取操作耗时的操作,当读取操作很简单时,单线程模式相比而言更加简单高效
- 读取频率比写入频率高的操作,当写入频率较高时,写入操作频繁的打断读取操作,读写锁模式的优越性降低
1,锁的含义
synchronized 是用于获取实例的锁。Java 中每个对象的实例都持有一个锁,但同一个锁同时只能由一个线程持有。这种结构是 Java 规范规定的,JVM 也是这么实现的。这种锁称为物理锁。
在读写锁模式中,这里的锁与 synchronized 获取的锁是不一样的,这并不是 Java 规范规定的锁,而是由开发人员自己实现的,这种锁称为逻辑锁。
ReadWriteLock 类中有读锁和写锁,但这是逻辑锁,这两个逻辑锁共用同一个由 synchronized 获取的 ReadWriteLock 类实例的物理锁。这就是为什么我们在 ReadWriteLock 类中的加锁、解锁方法上都声明了 synchronized 关键字的缘故,因为它们最终要共用同一把物理锁,而同一把物理锁同一时间只能由一个线程持有,这种规定保证了逻辑锁的实现。
2,Java 中的读写锁
在 juc 包中提供了实现了读写锁模式的 ReadWriteLock 接口和 ReentrantReadWriteLock 实现类。通过 ReentrantReadWriteLock 改写之后的 Data 类代码如下:
/**
* @author koma <komazhang@foxmail.com>
* @date 2018-10-18
*/
public class Data {
private final char[] buffer;
private final ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
private final Lock readLock = lock.readLock();
private final Lock writeLock = lock.writeLock();
public Data(int size) {
this.buffer = new char[size];
for (int i = 0; i < size; i++) {
buffer[i] = '*';
}
}
public char[] read() throws InterruptedException {
readLock.lock();
try {
Thread.sleep(10000);
return doRead();
} finally {
readLock.unlock();
}
}
public void write(char c) throws InterruptedException {
writeLock.lock();
try {
doWrite(c);
} finally {
writeLock.unlock();
}
}
//其它方法不变