RxJava之背压策略
转载请以链接形式标明出处:
本文出自:103style的博客
本文基于 RxJava 2.x
版本
目录
-
RxJava
背压策略简介 -
Observable
背压导致崩溃的原因 -
Flowable
使用介绍 -
五种
背压策略源码分析 - 小结
RxJava背压策略简介
Backpressure is when in an Flowable processing pipeline, some asynchronous stages can't process the values fast enough and need a way to tell the upstream producer to slow down.
背压是在Flowable处理事件流中,某些异步阶段无法足够快地处理这些值,并且需要一种方法来告诉上游生产商减速。
所以RxJava
的背压策略(Backpressure
)是指处理上述上游流速过快现象的一种策略。 类似 Java中的线程池 中的饱和策略RejectedExecutionHandler
。
Observable背压导致崩溃的原因
我们先使用 Observable
看看是什么情况:
Observable
.create(new ObservableOnSubscribe<Integer>() {
@Override
public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {
for (int i = 0; ; i++) {
emitter.onNext(i);
}
}
})
.subscribeOn(Schedulers.computation())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Consumer<Integer>() {
@Override
public void accept(Integer integer) throws Exception {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(integer);
}
});
image.png
输出:
I/art: Background partial concurrent mark sweep GC freed 7(224B) AllocSpace objects, 0(0B) LOS objects, 27% free, 43MB/59MB, paused 528us total 106.928ms
I/System.out: 0
I/art: Background partial concurrent mark sweep GC freed 8(256B) AllocSpace objects, 0(0B) LOS objects, 20% free, 62MB/78MB, paused 1.065ms total 327.346ms
I/System.out: 1
I/art: Background partial concurrent mark sweep GC freed 8(256B) AllocSpace objects, 0(0B) LOS objects, 16% free, 82MB/98MB, paused 1.345ms total 299.700ms
I/art: Background partial concurrent mark sweep GC freed 8(256B) AllocSpace objects, 0(0B) LOS objects, 13% free, 103MB/119MB, paused 1.609ms total 377.432ms
I/System.out: 2
I/art: Background sticky concurrent mark sweep GC freed 29(800B) AllocSpace objects, 0(0B) LOS objects, 0% free, 120MB/120MB, paused 1.280ms total 105.749ms
I/art: Background partial concurrent mark sweep GC freed 22(640B) AllocSpace objects, 0(0B) LOS objects, 11% free, 126MB/142MB, paused 1.818ms total 679.398ms
I/System.out: 3
I/art: Background partial concurrent mark sweep GC freed 9(288B) AllocSpace objects, 0(0B) LOS objects, 9% free, 148MB/164MB, paused 1.946ms total 555.619ms
I/System.out: 4
I/art: Background sticky concurrent mark sweep GC freed 29(800B) AllocSpace objects, 0(0B) LOS objects, 0% free, 165MB/165MB, paused 1.253ms total 107.036ms
I/art: Background partial concurrent mark sweep GC freed 8(256B) AllocSpace objects, 0(0B) LOS objects, 8% free, 172MB/188MB, paused 2.355ms total 570.029ms
I/art: Background sticky concurrent mark sweep GC freed 28(768B) AllocSpace objects, 0(0B) LOS objects, 0% free, 188MB/188MB, paused 11.474ms total 82.399ms
I/System.out: 5
I/art: Background partial concurrent mark sweep GC freed 23(672B) AllocSpace objects, 0(0B) LOS objects, 7% free, 197MB/213MB, paused 2.355ms total 631.635ms
I/art: Background partial concurrent mark sweep GC freed 22(640B) AllocSpace objects, 0(0B) LOS objects, 6% free, 226MB/242MB, paused 3.091ms total 908.581ms
I/System.out: 6
I/art: Background sticky concurrent mark sweep GC freed 29(800B) AllocSpace objects, 0(0B) LOS objects, 0% free, 242MB/242MB, paused 1.672ms total 102.676ms
I/art: Waiting for a blocking GC Alloc
I/art: Clamp target GC heap from 267MB to 256MB
I/art: Alloc sticky concurrent mark sweep GC freed 0(0B) AllocSpace objects, 0(0B) LOS objects, 1% free, 252MB/256MB, paused 1.581ms total 10.336ms
I/art: WaitForGcToComplete blocked for 12.447ms for cause Alloc
I/art: Starting a blocking GC Alloc
I/art: Starting a blocking GC Alloc
I/System.out: 9
I/art: Waiting for a blocking GC Alloc
I/art: Waiting for a blocking GC Alloc
I/art: Clamp target GC heap from 268MB to 256MB
I/art: Alloc concurrent mark sweep GC freed 0(0B) AllocSpace objects, 0(0B) LOS objects, 1% free, 252MB/256MB, paused 1.574ms total 818.037ms
I/art: WaitForGcToComplete blocked for 2.539s for cause Alloc
I/art: Starting a blocking GC Alloc
I/art: Waiting for a blocking GC Alloc
W/art: Throwing OutOfMemoryError "Failed to allocate a 12 byte allocation with 4109520 free bytes and 3MB until OOM; failed due to fragmentation (required continguous free 4096 bytes for a new buffer where largest contiguous free 0 bytes)"
我们可以从上图中看到,内存在逐步上升,在一定的时间后,到达256M
之后会触发GC,最后抛出OutOfMemoryError
。因为上游的事件发送太快而下游的消费者消耗的比较慢。
那导致内存暴增的源头是什么呢 ?
我们对上面的代码做一点点修改,注释了observeOn(AndroidSchedulers.mainThread())
,会发现内存显示很正常,不会存在上述问题。
Observable
.create(new ObservableOnSubscribe<Integer>() {
@Override
public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {
for (int i = 0; ; i++) {
emitter.onNext(i);
}
}
})
.subscribeOn(Schedulers.computation())
// .observeOn(AndroidSchedulers.mainThread())
.subscribe(new Consumer<Integer>() {
@Override
public void accept(Integer integer) throws Exception {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(integer);
}
});
注释了observeOn
所以内存暴增的源头就在 observeOn(AndroidSchedulers.mainThread())
.
我们来看看 observeOn
的源码,通过 RxJava subscribeOn和observeOn源码介绍,我们知道在 ObservableObserveOn.ObserveOnObserver
的 onSubscribe
中构建了一个容量默认为128
的SpscLinkedArrayQueue
。
queue = new SpscLinkedArrayQueue<T>(bufferSize);
上游每发送一个事件都会通过queue.offer(t)
保存到SpscLinkedArrayQueue
中。
public void onNext(T t) {
if (done) {
return;
}
if (sourceMode != QueueDisposable.ASYNC) {
queue.offer(t);
}
schedule();
}
我们可以写个测试代码来看看,因为生产比消费快的多,相当于一直添加元素,如下:
private void test(){
SpscLinkedArrayQueue<Integer> queue = new SpscLinkedArrayQueue<>(128);
for (int i = 0; ; i++) {
queue.offer(i);
}
}
运行会发现内存变化和Observable
一样迅速暴增。
SpscLinkedArrayQueue
的详细介绍后面再说。现在可以大致理解为 一直狂吃,然后最后撑破肚皮,然后裂开。
Flowable的用法
我们来看看 Flowable
的用法:
Flowable.create(FlowableOnSubscribe<T> source, BackpressureStrategy mode)
BackpressureStrategy
包含五种模式:MISSING
、ERROR
、BUFFER
、DROP
、LATEST
。
下面对这五种BackpressureStrategy
分别介绍其用法以及 发送事件速度 > 接收事件速度
时的处理方式:
-
BackpressureStrategy.MISSING
处理方式:抛出异常MissingBackpressureException
,并提示 缓存区满了
代码示例:Flowable .create(new FlowableOnSubscribe<Object>() { @Override public void subscribe(FlowableEmitter<Object> emitter) throws Exception { for (int i = 0; i < Flowable.bufferSize() * 2; i++) { emitter.onNext(i); } emitter.onComplete(); } }, BackpressureStrategy.MISSING) .subscribeOn(Schedulers.computation()) .observeOn(AndroidSchedulers.mainThread()) .subscribe(new Subscriber<Object>() { @Override public void onSubscribe(Subscription s) { s.request(Integer.MAX_VALUE); } @Override public void onNext(Object o) { System.out.println("onNext: " + o); try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } } @Override public void onError(Throwable t) { t.printStackTrace(); } @Override public void onComplete() { System.out.println("onComplete"); } });
输出结果:
System.out: onNext: 0 System.err: io.reactivex.exceptions.MissingBackpressureException: Queue is full?!
-
BackpressureStrategy.ERROR
处理方式:直接抛出异常MissingBackpressureException
修改上述代码的BackpressureStrategy.MISSING
为BackpressureStrategy.ERROR
:Flowable .create(new FlowableOnSubscribe<Object>() { ... }, BackpressureStrategy.ERROR) ...
输出结果:
System.out: onNext: 0 System.err: io.reactivex.exceptions.MissingBackpressureException: create: could not emit value due to lack of requests
-
BackpressureStrategy.BUFFER
处理方式:类似Observable
一样扩充缓存区大小
修改上述代码的BackpressureStrategy.MISSING
为BackpressureStrategy.BUFFER
:Flowable .create(new FlowableOnSubscribe<Object>() { ... }, BackpressureStrategy.BUFFER) ...
输出结果:
System.out: onNext: 0 System.out: onNext: 1 System.out: onNext: 2 System.out: onNext: 3 System.out: onNext: 4 System.out: onNext: 5 System.out: onNext: 6 ... System.out: onNext: 247 System.out: onNext: 248 System.out: onNext: 249 System.out: onNext: 250 System.out: onNext: 251 System.out: onNext: 252 System.out: onNext: 253 System.out: onNext: 254 System.out: onNext: 255 System.out: onComplete
-
BackpressureStrategy.DROP
处理方式:丢弃缓存区满后处理缓冲区数据期间发送过来的事件
示例代码:Flowable .create(new FlowableOnSubscribe<Object>() { @Override public void subscribe(FlowableEmitter<Object> emitter) throws Exception { for (int i = 0; ; i++) { emitter.onNext(i); } } }, BackpressureStrategy.DROP) .subscribeOn(Schedulers.computation()) .observeOn(AndroidSchedulers.mainThread()) .subscribe(new Subscriber<Object>() { @Override public void onSubscribe(Subscription s) { s.request(Integer.MAX_VALUE); } @Override public void onNext(Object o) { System.out.println("onNext: " + o); try { Thread.sleep(10); } catch (InterruptedException e) { e.printStackTrace(); } } @Override public void onError(Throwable t) { t.printStackTrace(); } @Override public void onComplete() { System.out.println("onComplete"); } });
输出结果:
System.out: onNext: 0 System.out: onNext: 1 System.out: onNext: 2 System.out: onNext: 3 ... System.out: onNext: 124 System.out: onNext: 125 System.out: onNext: 126 System.out: onNext: 127 System.out: onNext: 1070801 System.out: onNext: 1070802 System.out: onNext: 1070803 System.out: onNext: 1070804 System.out: onNext: 1070805 ...
-
BackpressureStrategy.LATEST
处理方式:丢弃缓存区满后处理缓冲区数据期间发送过来的非最后一个事件。下面示例代码输出了129
个事件,下面的源码分析会介绍。
示例代码:Flowable .create(new FlowableOnSubscribe<Object>() { @Override public void subscribe(FlowableEmitter<Object> emitter) throws Exception { for (int i = 0; i < Flowable.bufferSize() * 2; i++) { emitter.onNext(i); } emitter.onComplete(); } }, BackpressureStrategy.LATEST) .subscribeOn(Schedulers.computation()) .observeOn(AndroidSchedulers.mainThread()) .subscribe(new Subscriber<Object>() { @Override public void onSubscribe(Subscription s) { s.request(Integer.MAX_VALUE); } @Override public void onNext(Object o) { System.out.println("onNext: " + o); try { Thread.sleep(10); } catch (InterruptedException e) { e.printStackTrace(); } } @Override public void onError(Throwable t) { t.printStackTrace(); } @Override public void onComplete() { System.out.println("onComplete"); } });
输出结果:
System.out: onNext: 0 System.out: onNext: 1 System.out: onNext: 2 System.out: onNext: 3 ... System.out: onNext: 124 System.out: onNext: 125 System.out: onNext: 126 System.out: onNext: 127 System.out: onNext: 255 System.out: onComplete
五种背压策略源码分析
通知之前 RxJava之create操作符源码解析 的介绍。我们知道Flowable.create(new FlowableOnSubscribe<Object>(){...}, BackpressureStrategy.LATEST)
返回的是一个FlowableCreate
对象。
分别对不同的背压策略创建了不同的Emitter
.
public final class FlowableCreate<T> extends Flowable<T> {
//...
public FlowableCreate(FlowableOnSubscribe<T> source, BackpressureStrategy backpressure) {
this.source = source;
this.backpressure = backpressure;
}
public void subscribeActual(Subscriber<? super T> t) {
BaseEmitter<T> emitter;
switch (backpressure) {
case MISSING: {
emitter = new MissingEmitter<T>(t);
break;
}
case ERROR: {
emitter = new ErrorAsyncEmitter<T>(t);
break;
}
case DROP: {
emitter = new DropAsyncEmitter<T>(t);
break;
}
case LATEST: {
emitter = new LatestAsyncEmitter<T>(t);
break;
}
default: {
emitter = new BufferAsyncEmitter<T>(t, bufferSize());
break;
}
}
t.onSubscribe(emitter);
try {
source.subscribe(emitter);
} catch (Throwable ex) {
Exceptions.throwIfFatal(ex);
emitter.onError(ex);
}
}
//...
}
-
MissingEmitter
通过上面的代码我们可以看到static final class MissingEmitter<T> extends BaseEmitter<T> { MissingEmitter(Subscriber<? super T> downstream) { super(downstream); } @Override public void onNext(T t) { if (isCancelled()) { return; } if (t != null) { downstream.onNext(t); } else { onError(new NullPointerException("onNext called with null. Null values are generally not allowed in 2.x operators and sources.")); return; } for (;;) { long r = get(); if (r == 0L || compareAndSet(r, r - 1)) { return; } } } }
MissingEmitter
基本上没做什么操作,所以BackpressureStrategy.MISSING
示例中的代码实际上是调用了ObserveOn
中返回对象的FlowableObserveOn.ObserveOnSubscriber
的onNext
:
上面代码中我们看到了背压情况下出现的报错信息,出现的前提是public final void onNext(T t) { if (done) { return; } if (sourceMode == ASYNC) { trySchedule(); return; } if (!queue.offer(t)) { upstream.cancel(); error = new MissingBackpressureException("Queue is full?!"); done = true; } trySchedule(); }
queue.offer(t)
返回false
。这里的queue
是onSubscribe
中构造的容量为Flowable.bufferSize()
的SpscArrayQueue
.public void onSubscribe(Subscription s) { if (SubscriptionHelper.validate(this.upstream, s)) { this.upstream = s; //... queue = new SpscArrayQueue<T>(prefetch); downstream.onSubscribe(this); s.request(prefetch); } }
SpscArrayQueue
的offer
方法,我们可以看到当SpscArrayQueue
数据 “满了” 的时候即返回false
.
所以public boolean offer(E e) { //... final int mask = this.mask; final long index = producerIndex.get(); final int offset = calcElementOffset(index, mask); if (index >= producerLookAhead) { int step = lookAheadStep; if (null == lvElement(calcElementOffset(index + step, mask))) { // LoadLoad producerLookAhead = index + step; } else if (null != lvElement(offset)) { return false; } } soElement(offset, e); // StoreStore soProducerIndex(index + 1); // ordered store -> atomic and ordered for size() return true; }
BackpressureStrategy.MISSING
在缓冲区满了之后再发射事件即会抛出message
为"Queue is full?!"
的MissingBackpressureException
.
-
ErrorAsyncEmitter
通过在abstract static class BaseEmitter<T> extends AtomicLong implements FlowableEmitter<T>, Subscription { //... @Override public final void request(long n) { if (SubscriptionHelper.validate(n)) { BackpressureHelper.add(this, n); onRequested(); } } //... } abstract static class NoOverflowBaseAsyncEmitter<T> extends BaseEmitter<T> { NoOverflowBaseAsyncEmitter(Subscriber<? super T> downstream) { super(downstream); } @Override public final void onNext(T t) { //... if (get() != 0) { downstream.onNext(t); BackpressureHelper.produced(this, 1); } else { onOverflow(); } } abstract void onOverflow(); } static final class ErrorAsyncEmitter<T> extends NoOverflowBaseAsyncEmitter<T> { ErrorAsyncEmitter(Subscriber<? super T> downstream) { super(downstream); } @Override void onOverflow() { onError(new MissingBackpressureException("create: could not emit value due to lack of requests")); } }
onSubscribe
中调用request(Flowable.bufferSize())
设置当前AtomicLong
的value
值。然后onNext
中每传递一个事件就通过BackpressureHelper.produced(this, 1)
将value
减1
. 当发送了Flowable.bufferSize()
个事件,get() != 0
不成立,调用onOverflow()
方法抛出MissingBackpressureException
异常。
-
DropAsyncEmitter
和static final class DropAsyncEmitter<T> extends NoOverflowBaseAsyncEmitter<T> { private static final long serialVersionUID = 8360058422307496563L; DropAsyncEmitter(Subscriber<? super T> downstream) { super(downstream); } @Override void onOverflow() { // nothing to do } }
ErrorAsyncEmitter
类似,只不过当发送超过超过Flowable.bufferSize()
的事件时,啥也没做,即实现丢弃的功能。
-
LatestAsyncEmitter
static final class LatestAsyncEmitter<T> extends BaseEmitter<T> { final AtomicReference<T> queue; //... LatestAsyncEmitter(Subscriber<? super T> downstream) { super(downstream); this.queue = new AtomicReference<T>(); //... } @Override public void onNext(T t) { //... queue.set(t); drain(); } //... }
我们可以看到每次调用
onNext
都会更新传过来的值到queue
中,所以queue
中保存了最新的值。-
接着来看
drain
方法:
上面我们知道在onSubscribe
中调用request()
设置当前AtomicLong
的value
值。void drain() { //... for (;;) { long r = get(); long e = 0L; while (e != r) { //... boolean d = done; T o = q.getAndSet(null); boolean empty = o == null; if (d && empty) { //... return; } if (empty) { break; } a.onNext(o); e++; } if (e == r) { //... boolean d = done; boolean empty = q.get() == null; if (d && empty) { //... return; } } if (e != 0) { BackpressureHelper.produced(this, e); } //... } }
- 在
for (;;)
里面通过get()
获取当前AtomicLong
的值。然后通过a.onNext(o);
传递给下游,然后e++
,在通过BackpressureHelper.produced(this, e);
减掉AtomicLong
的值。 - 当调用
Flowable.bufferSize()
次onNext
之后,get()
返回的值为0
,所以e != r
不成立,在e == r
的判断中,在从onNext
过来时empty
为false
,所以直接跳出for
循环。 - 通过上面我们知道当传递超过
Flowable.bufferSize()
的事件过来,只会更新queue
中的值为最新的事件,其他啥也没做。那最后一个事件时怎么发出的呢?,继续往下看。
- 在
-
最后一个事件时怎么发出的?
我们在上面的drain()
中调用a.onNext(o)
最终是调用observeOn
构建对象中的ObserveOnSubscriber
的onNext
,即调用runAsync();
。public final void onNext(T t) { //... trySchedule(); } final void trySchedule() { //... worker.schedule(this); } @Override public final void run() { if (outputFused) { runBackfused(); } else if (sourceMode == SYNC) { runSync(); } else { runAsync(); } }
-
runAsync()
:void runAsync() { //... for (;;) { long r = requested.get(); while (e != r) { boolean d = done; T v; try { v = q.poll(); } catch (Throwable ex) { //... return; } //... a.onNext(v); e++; if (e == limit) { if (r != Long.MAX_VALUE) { r = requested.addAndGet(-e); } upstream.request(e); e = 0L; } } //... } }
- 我们可以看到在
for
循环中通过q.poll()
去获取缓存队列SpscArrayQueue
中的事件。然后通过a.onNext(v);
去执行我们示例代码中的耗时操作。 - 然后当
e == limit
是,回去调用LatestAsyncEmitter
的request(e)
,而limit
是在构造函数中初始化的,值为缓存队列容量Flowable.bufferSize()
的3/4
。所以当队列中的事件消耗了容量的3/4
之后,会再去请求上游发送事件。BaseObserveOnSubscriber( Worker worker, boolean delayError, int prefetch) { //... this.limit = prefetch - (prefetch >> 2); }
- 我们可以看到在
-
request
方法:@Override public final void request(long n) { if (SubscriptionHelper.validate(n)) { System.out.println("n = " + n); BackpressureHelper.add(this, n); onRequested(); } } @Override void onRequested() { drain(); }
即继续执行
drain()
方法,因为queue
中还保存最新的值事件。所以会通过a.onNext(o)
发送这个最新的事件。
-
-
如果在执行完等待队列
3/4
的事件之后,上游的事件还没发送结束,下游即会再次缓存上游发送过来的容量的3/4
个事件。
示例代码:Flowable.create(new FlowableOnSubscribe<Object>() { @Override public void subscribe(FlowableEmitter<Object> emitter) throws Exception { for (int i = 0; i < Flowable.bufferSize() * 2; i++) { emitter.onNext(i); } Thread.sleep(10 * Flowable.bufferSize()); for (int i = 0; i < Flowable.bufferSize() * 2; i++) { emitter.onNext(Flowable.bufferSize() * 2 + i); } emitter.onComplete(); } }, BackpressureStrategy.LATEST) .subscribeOn(Schedulers.computation()) .observeOn(AndroidSchedulers.mainThread()) .subscribe(new Subscriber<Object>() { @Override public void onSubscribe(Subscription s) { s.request(Integer.MAX_VALUE); } @Override public void onNext(Object o) { System.out.println("onNext: " + o); try { Thread.sleep(10); } catch (InterruptedException e) { e.printStackTrace(); } } @Override public void onError(Throwable t) { t.printStackTrace(); } @Override public void onComplete() { System.out.println("onComplete"); } });
输出结果:
System.out: onNext: 0 System.out: onNext: 1 System.out: onNext: 2 System.out: onNext: 3 //.... System.out: onNext: 125 System.out: onNext: 126 System.out: onNext: 127 System.out: onNext: 255 System.out: onNext: 256 System.out: onNext: 257 //... System.out: onNext: 349 System.out: onNext: 350 System.out: onNext: 511 System.out: onComplete
可以看到输出结果中
255-350
即为容量128
的3/4
个元素。
-
BufferAsyncEmitter
- 我们可以看到内部有一个
SpscLinkedArrayQueue
的缓存队列,每次调用onNext
都会先保存到缓存队列,然后通过drain()
方法一直去遍历当前的缓存队列。然后和LatestAsyncEmitter
一样,当下游的缓存队列满了之后,即不再放下游发送事件,只是把上游的事件保存在SpscLinkedArrayQueue
中,等待下游处理了容量的3/4
的事件之后,上游在发送容量的3/4
的事件过去。知道上游的事件消耗完,或者异常退出。即和Observable
的效果类似,只不过缓存队列一个在上游一个在下游。
static final class BufferAsyncEmitter<T> extends BaseEmitter<T> { final SpscLinkedArrayQueue<T> queue; //... BufferAsyncEmitter(Subscriber<? super T> actual, int capacityHint) { super(actual); this.queue = new SpscLinkedArrayQueue<T>(capacityHint); this.wip = new AtomicInteger(); } @Override public void onNext(T t) { //... queue.offer(t); drain(); } void drain() { //... final SpscLinkedArrayQueue<T> q = queue; for (;;) { long r = get(); long e = 0L; while (e != r) { //... boolean d = done; T o = q.poll(); boolean empty = o == null; if (d && empty) { //... return; } if (empty) { break; } a.onNext(o); e++; } if (e == r) { //... boolean d = done; boolean empty = q.isEmpty(); if (d && empty) { //... return; } } if (e != 0) { BackpressureHelper.produced(this, e); } missed = wip.addAndGet(-missed); if (missed == 0) { break; } } } }
- 我们可以看到内部有一个
小结
- 我们知道了
Observable
出现背压的原因是上游发送的超多事件缓存在observeOn
返回对象的缓存队列中,事件的增加导致了内存的增加。 - 我们介绍了
Flowable
的使用和五种背压策略的具体实现。-
MISSING:超过
observeOn
配置的bufferSize
则抛出异常MissingBackpressureException
并提示Queue is full?!
。 -
ERROR:超过
observeOn
配置的bufferSize
则直接抛出异常MissingBackpressureException
。 -
BUFFER:超过
observeOn
配置的bufferSize
则缓存到上游的缓冲队列,等待下游消耗了容量的3/4
的事件之后,在继续发送上游缓存的事件给下游。 -
DROP:超过
observeOn
配置的bufferSize
则丢弃。 -
LATEST:超过
observeOn
配置的bufferSize
则丢弃并保存最新的值到queue
,如果在下游消耗了容量的3/4
的事件之后,上游还有事件在发送,则继续往下游发送事件,当没有事件的时候,再发送queue
中保存的最新的那个事件。
-
MISSING:超过
参考文章
以上