tf.nn.sigmoid_cross_entropy_with
tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, name=None)
Docstring:
Computes sigmoid cross entropy given logits
.
Type: function
Measures the probability error in discrete classification tasks in which each class is independent and not mutually exclusive. For instance, one could perform multilabel classification where a picture can contain both an elephant and a dog at the same time.
与sigmoid
搭配使用的交叉熵损失函数,输入不需要额外加一层sigmoid
,tf.nn.sigmoid_cross_entropy_with_logits
中会集成有sigmoid
并进行了计算优化;它适用于分类的类别之间不是相互排斥的场景,即多个标签(如图片中包含狗和猫)。
For brevity, let x = logits
, z = labels
. The logistic loss is
z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
= z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
= z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
= z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
= (1 - z) * x + log(1 + exp(-x))
= x - x * z + log(1 + exp(-x))
For x < 0, to avoid overflow in exp(-x), we reformulate the above
x - x * z + log(1 + exp(-x))
= log(exp(x)) - x * z + log(1 + exp(-x))
= - x * z + log(1 + exp(x))
Hence, to ensure stability and avoid overflow, the implementation uses this equivalent formulation
max(x, 0) - x * z + log(1 + exp(-abs(x)))
logits
and labels
must have the same type and shape.
Args:
_sentinel: Used to prevent positional parameters. Internal, do not use.
labels: A Tensor
of the same type and shape as logits
.
logits: A Tensor
of type float32
or float64
.
name: A name for the operation (optional).
Returns:
A Tensor
of the same shape as logits
with the componentwise logistic losses.
Raises:
ValueError: If logits
and labels
do not have the same shape.