Elasticsearch二次评分
2017-03-22 本文已影响121人
GhostStories
二次评分给了用户很多机会来定制业务逻辑
欢迎访问本人博客:http://wangnan.tech
理解二次评分
二次评分是指重新计算查询返回文档中指定个数文档的得分,es会截取查询返回的前N个,并使用预定义的二次评分方法来重新计算他们的得分
二次评分查询结构
从最简单的查询入手:match_all查询类型,返回索引中所有文档,每个返回的文档的得分都是1.0,这样可以充分体现二次评分对查询返回文档集的影响
查询范例如下:
改查询将每一个文档的得分改写为该文档的year字段中的值
返回结果:
二次评分参数配置
在resource对象中,必须配置下面的参数:
- window_size 窗口大小,默认值是from和size参数值之和,它指定了每个分片上参与二次评分的文档个数
- query_weight 查询权重,默认值是1,原始查询得分与二次评分的得分相加之前将乘以改值
- rescore_query_weight 二次评分查询的权重值,默认值是1,二次评分查询得分在与原始查询得分相加之前,乘以该值
-
rescore_mode 二次评分模式,默认为total,可用的选项有total、max、min、avg和mutiply
- total 得分是两种查询之he
- max 两种查询中的最大值
- min 两种查询中的最小值
- avg 两种查询的平均值
- multiply 两种查询的乘积
小结
- 有时候,我们需要显示查询结果,并且使得页面上靠前文档的顺序能受到一些额外的规则控制,但遗憾的是,我们并不能通过二次评分来实现,也许有些读者会想到window-size参数,然而实际上这个参数与返回列表中靠前文档并无关系,他只是制定了每个分片应该返回的文档数,而且window_size不能小于页面大小
- 二次评分功能并不能与排序一起使用,这是因为排序发生在二次评分之前,所以排序没有考虑后续新计算出来的文档得分
(注:内容整理自《深入理解Elasticsearch》)