▌☞ ·····大学♨青春····· ☜ ▌成长的前端er管理

各种排序算法总结

2015-03-19  本文已影响47996人  AlvinL

排序算法是最基本最常用的算法,不同的排序算法在不同的场景或应用中会有不同的表现,我们需要对各种排序算法熟练才能将它们应用到实际当中,才能更好地发挥它们的优势。今天,来总结下各种排序算法。

下面这个表格总结了各种排序算法的复杂度与稳定性:


各种排序算法复杂度比较.png

冒泡排序

冒泡排序可谓是最经典的排序算法了,它是基于比较的排序算法,时间复杂度为O(n^2),其优点是实现简单,n较小时性能较好。

void bubble_sort(int arr[], int len)
{
for (int i = 0; i < len - 1; i++)
{
for (int j = len - 1; j > i; j--)
{
if (arr[j] < arr[j - 1])
{
int temp = arr[j];
arr[j] = arr[j - 1];
arr[j - 1] = temp;
}
}
}
}
```

选择排序

插入排序

快速排序

void quick_sort(int arr[], int left, int right)
{
if (left < right)
{
int i = left, j = right, target = arr[left];
while (i < j)
{
while (i < j && arr[j] > target)
j--;
if (i < j)
arr[i++] = arr[j];

        while (i < j && arr[i] < target)
            i++;
        if (i < j)
            arr[j] = arr[i];
    }
    arr[i] = target;
    quick_sort(arr, left, i - 1);
    quick_sort(arr, i + 1, right);
}

}
```

归并排序

堆排序

二叉堆

二叉堆是完全二叉树或者近似完全二叉树,满足两个特性

当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。一般二叉树简称为堆。

堆的存储

一般都是数组来存储堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 12 * i + 2。如第0个结点左右子结点下标分别为1和2。存储结构如图所示:

堆结构.png

堆排序原理

堆排序的时间复杂度为O(nlogn)

/**
 * 将数组arr构建大根堆
 * @param arr 待调整的数组
 * @param i   待调整的数组元素的下标
 * @param len 数组的长度
 */
void heap_adjust(int arr[], int i, int len)
{
    int child;
    int temp;

    for (; 2 * i + 1 < len; i = child)
    {
        child = 2 * i + 1;  // 子结点的位置 = 2 * 父结点的位置 + 1
        // 得到子结点中键值较大的结点
        if (child < len - 1 && arr[child + 1] > arr[child])
            child ++;
        // 如果较大的子结点大于父结点那么把较大的子结点往上移动,替换它的父结点
        if (arr[i] < arr[child])
        {
            temp = arr[i];
            arr[i] = arr[child];
            arr[child] = temp;
        }
        else
            break;
    }
}

/**
 * 堆排序算法
 */
void heap_sort(int arr[], int len)
{
    int i;
    // 调整序列的前半部分元素,调整完之后第一个元素是序列的最大的元素
    for (int i = len / 2 - 1; i >= 0; i--)
    {
        heap_adjust(arr, i, len);
    }

    for (i = len - 1; i > 0; i--)
    {
        // 将第1个元素与当前最后一个元素交换,保证当前的最后一个位置的元素都是现在的这个序列中最大的
        int temp = arr[0];
        arr[0] = arr[i];
        arr[i] = temp;
        // 不断缩小调整heap的范围,每一次调整完毕保证第一个元素是当前序列的最大值
        heap_adjust(arr, 0, i);
    }
}

未完待续

上一篇 下一篇

猜你喜欢

热点阅读