NLP&NLU

【Gensim训练Word2Vec】参数详解

2019-01-19  本文已影响23人  top_小酱油

用gensim函数库训练Word2Vec模型有很多配置参数。

这里对gensim文档的Word2Vec函数的参数说明进行翻译。

class gensim.models.word2vec.Word2Vec(sentences=None,size=100,alpha=0.025,window=5, min_count=5, max_vocab_size=None, sample=0.001,seed=1, workers=3,min_alpha=0.0001, sg=0, hs=0, negative=5, cbow_mean=1, hashfxn=<built-in function hash>,iter=5,null_word=0, trim_rule=None, sorted_vocab=1, batch_words=10000)

参数详解:

· sentences:可以是一个list,对于大语料集,建议使用BrownCorpus,Text8Corpus或LineSentence构建;
· sg: 用于设置训练算法,默认为0,对应CBOW算法;sg=1则采用skip-gram算法;
· size:是指特征向量的维度,默认为100。大的size需要更多的训练数据,但是效果会更好. 推荐值为几十到几百;
· window:表示当前词与预测词在一个句子中的最大距离是多少;
· alpha: 是学习速率;
· seed:用于随机数发生器。与初始化词向量有关;
· min_count: 可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5;
· max_vocab_size: 设置词向量构建期间的RAM限制。如果所有独立单词个数超过这个,则就消除掉其中最不频繁的一个。每一千万个单词需要大约1GB的RAM。设置成None则没有限制;
· sample: 高频词汇的随机降采样的配置阈值,默认为1e-3,范围是(0,1e-5);
· workers参数控制训练的并行数;
· hs: 如果为1则会采用hierarchical softmax技巧。如果设置为0(defaut),则negative sampling会被使用;
· negative: 如果>0,则会采用negativesamping,用于设置多少个noise words;
· cbow_mean: 如果为0,则采用上下文词向量的和,如果为1(defaut)则采用均值。只有使用CBOW的时候才起作用;
· hashfxn: hash函数来初始化权重。默认使用python的hash函数;
· iter: 迭代次数,默认为5;
· trim_rule: 用于设置词汇表的整理规则,指定那些单词要留下,哪些要被删除。可以设置为None(min_count会被使用)或者一个接受()并返回RU·E_DISCARD,uti·s.RU·E_KEEP或者uti·s.RU·E_DEFAU·T的函数;
· sorted_vocab: 如果为1(defaut),则在分配word index 的时候会先对单词基于频率降序排序;
· batch_words:每一批的传递给线程的单词的数量,默认为10000。

上一篇下一篇

猜你喜欢

热点阅读