码农的世界计算机微刊数据结构和算法分析

【数据结构】二叉排序树(Binary Sort Tree)(建立

2017-09-25  本文已影响3967人  NotFunGuy

二叉排序树定义

二叉排序树(Binary Sort Tree),又称二叉查找树。它是一颗空树,或者具有下列性质:

构造二叉排序树的目的


一、二叉排序树的查找

二叉排序树的查找代码实现

#define TRUE 1
#define FALSE 0
#define  MAXSIZE 100

typedef struct BiTNode{// 二叉树的儿二叉链表结点结构
    
    int data; // 结点结构
    struct BiTNode * lchild,* rchild;  // 左右孩子指针
    
}BiTNode, * BiTree;

/**
 * 递归查找二叉排序树 T 中是否存在 key
 * 指针 f 指向 T 的 双亲,其初始调用值为NULL
 * 若查找成功,则指针 p 指向该数据元素结点,并返回TRUE
 * 若查找不成功, 则指针 p 指向查找路径上访问的最后一个结点并返回FALSE
 */
int SearchBST(BiTree T, int key, BiTree f, BiTree *p){
    
    if (!T) {  // 查找不成功
        *p = f;
        return FALSE;
        
    }else if (key == T->data){
        
        *p = T;
        return TRUE;
        
    }else if (key < T->data){  // 在左子树中继续查找
        
        return SearchBST(T->lchild, key, T, p);
        
    }else{  // 在右子树中鸡血查找
        
        return SearchBST(T->rchild, key, T, p);
    }
}

二、二叉排序树的插入操作

二叉排序树的插入操作代码实现

/**
 * 二叉排序树的插入
 * 当二叉排序树中不存在关键字等于 key 的数据元素时,插入 key 并返回TRUE
 */
int InsertBST(BiTree * T, int key){
    
    BiTree p,s;
    
    if (!SearchBST( *T, key, NULL, &p)) {  // 没找到key
        
        s = (BiTree)malloc(sizeof(BiTNode));
        s->data = key;
        s->lchild = s->rchild = NULL;
        
        if (!p)
            *T = s;  // 插入 s 为新的根结点
        else if (key < p->data)
            p->lchild = s;  //插入 s 为左孩子
        else
            p->rchild = s; // 插入 s 为右孩子
        
        return TRUE;
    }else
        return FALSE;
}

三、二叉排序树的删除操作

二叉排序树的删除操作相对复杂,因为不能因为删除了结点,让这颗二叉排序树变得不满足二叉排序树的性质,所以对于二叉排序树的删除存在三种情况:

对于要删除的结点同时存在左右子树的情况的解决办法

核心思想

将它的直接前驱或者直接后继作为删除结点的数据

实现方法

二叉排序树的删除操作代码实现

/**
 * 从二叉排序树中删除结点 p , 并重接它的左/右子树
 */
int Delete(BiTree *p){
    
    BiTree q, s;
    
    if ((*p)->rchild == NULL) {  // 右子树空 则只需要重接它的左子树
        
        q = *p;
        *p = (*p)->lchild;
        free(q);
        
    }else if ((*p)->lchild == NULL){  // 左子树空 则只需要重接它的右子树
        
        q = *p;
        *p = (*p)->rchild;
        free(q);
        
    }else{  // 左右子树都不空
        
        q = *p;
        s = (*p)->lchild;
        
        while (s->rchild) {  // 向右到尽头,找到待删结点的前驱
            
            q = s;
            s = s->rchild;
        }
        
        (*p)->data = s->data;  // s 指向被删除结点的直接前驱 (将被删结点前驱的值取代被删结点的值)
        
        if (q != *p)
            q->rchild = s->lchild;  // 重接 q 的右子树
        else
            q->lchild = s->lchild;  // 重接 q 的左子树
        
        free(s);
    }
    
    return TRUE;
}

/**
 * 二叉排序树的删除
 * 当二叉排序树中存在关键字等于 key 的数据元素时,删除该数据元素并返回TRUE
 */
int DeleteBST(BiTree * T, int key){
    
    if (!*T)   // 不存在关键字等于 key 的元素
        return FALSE;
    else{
        
        if (key == (*T)->data)
            return Delete(T);
        else if (key < (*T)->data)
            return DeleteBST(&(*T)->lchild, key);
        else
            return DeleteBST(&(*T)->rchild, key);
    }
}

四、测试代码

对于二叉排序树的建立,可以通过二叉排序树的插入操作来实现。
通过中序遍历二叉排序树,结果是从小到大输出。

/**
 * 中序递归遍历
 */
void InOrderTraverse(BiTree T){
    
    if (!T)
        return;
    
    InOrderTraverse(T->lchild);
    printf("%d ", T->data);
    InOrderTraverse(T->rchild);
}


int main(int argc, const char * argv[]) {
    
    int i;
    int a[10] ={62,88,58,47,35,73,51,99,37,93};
    
    BiTree T = NULL;
    for (i = 0; i < 10; i++) {  // 通过插入操作来构建二叉排序树
        InsertBST(&T, a[i]);
    }
    
    printf("中序递归遍历二叉排序树:\n");
    InOrderTraverse(T);
    printf("\n\n");
    
    DeleteBST(&T, 93);
    printf("删除结点 93 后的结果为:\n");
    InOrderTraverse(T);
    printf("\n\n");
    
    printf("插入 91 后的结果为:\n");
    InsertBST(&T, 91);
    InOrderTraverse(T);
    printf("\n\n");
    
    return 0;
}

二叉排序树总结

上一篇 下一篇

猜你喜欢

热点阅读