面试题12.矩阵中的路径_hn
2020-03-21 本文已影响0人
1只特立独行的猪
题目描述
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一格开始,每一步可以在矩阵中向左、右、上、下移动一格。如果一条路径经过了矩阵的某一格,那么该路径不能再次进入该格子。例如,在下面的3×4的矩阵中包含一条字符串“bfce”的路径(路径中的字母用加粗标出)。
[["a","b","c","e"],
["s","f","c","s"],
["a","d","e","e"]]
但矩阵中不包含字符串“abfb”的路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入这个格子。
示例
示例 1:
输入:
board =
[["A","B","C","E"],
["S","F","C","S"],
["A","D","E","E"]], word = "ABCCED"
输出:true
示例2:
输入:board =
[["a","b"],
["c","d"]], word = "abcd"
输出:false
提示:
1 <= board.length <= 200
1 <= board[i].length <= 200
解答方法
方法一:dfs回溯法
思路
代码
class Solution:
def exist(self, board: List[List[str]], word: str) -> bool:
directs = [[-1,0],[1,0],[0,-1],[0,1]]
m = len(board)
if m == 0:
return False
n = len(board[0])
mark = [[False for _ in range(n)] for _ in range(m)]
def backtrack(x, y,index):
if index == len(word) -1:
return board[x][y] == word[index]
if board[x][y] == word[index]:
mark[x][y] = True
for direct in directs:
cur_x = x + direct[0]
cur_y = y + direct[1]
if cur_x >=0 and cur_x < m and cur_y >= 0 and cur_y < n and not mark[cur_x][cur_y] and backtrack( cur_x, cur_y, index+1):
return True
mark[x][y] = False
return False
for i in range(m):
for j in range(n):
if backtrack( i, j, 0):
return True
return False
时间复杂度
O((m*n)^2)
空间复杂度
O(m*n)