Logistic回归和Sigmoid函数

2017-11-03  本文已影响0人  人机分离机

一、概述

1. 原理:

2. 优缺点

理论

二、算法流程

  1. 收集数据:anyway
  2. 准备数据:需要数值型(要进行距离计算),结构化数据格式最佳
  3. 分析数据:anyway
  4. 训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数
  5. 测试算法:一旦训练步骤完成,分类将会很快
  6. 使用算法:

三、算法实践

错误合集

1.问题

1. 原理:

2. 优缺点

理论

二、算法流程

  1. 收集数据:anyway
  2. 准备数据:需要数值型(要进行距离计算),结构化数据格式最佳
  3. 分析数据:anyway
  4. 训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数
  5. 测试算法:一旦训练步骤完成,分类将会很快
  6. 使用算法:

三、算法实践

错误合集

1.问题

def loadDataSet():
    # 定义数据集和标签
    dataMat = []
    labelMat = []
    # 读取文件
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        # 初始化数据
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat, labelMat
>>> import logRegres
>>> dataArr,labelMat = logRegres.loadDataSet()
>>> logRegres.gradAscent(dataArr,labelMat)
matrix([[ 4.12414349],
        [ 0.48007329],
        [-0.6168482 ]])

#回归函数
def sigmoid(intX):
    return 1.0/(1+exp(-intX))

# 梯度上升算法
def gradAscent(dataMatIn,classLabels):
    # 转换为Numpy数据类型
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()
    # 矩阵大小
    m, n = shape(dataMatrix)
    # 步长
    alpha = 0.001
    # 迭代次数
    maxCycles = 500
    # 系数矩阵初始化为1
    weights = ones((n, 1))
    for k in range(maxCycles):
        # 变量h是一个列向量,元素个数等于样本个数
        h = sigmoid(dataMatrix*weights)
        error = (labelMat-h)
        weights = weights+alpha*dataMatrix.transpose()*error
    return weights

2.分析数据

# 画出最佳拟合直线
def plotBestFit(wei):
    import matplotlib.pyplot as plt
    # 矩阵变为数组
    weights = wei.getA()
    # 加载数据
    dataMat, labelMat = loadDataSet()
    # 转化为数组
    dataArr = array(dataMat)
    # 数据的列数目
    n = shape(dataArr)[0]
    # 用于存放类1的点
    xcord1 = []
    ycord1 = []
    # 用于存放类2的点
    xcord2 = []
    ycord2 = []
    # 遍历所有点
    for i in range(n):
        if(int(labelMat[i]) == 1):
            xcord1.append(dataArr[i, 1])
            ycord1.append(dataArr[i, 2])
        else:
            xcord2.append(dataArr[i, 1])
            ycord2.append(dataArr[i, 2])
    # 画出所有点的信息
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    # 画出分类的边界,函数的系数由之前的梯度上升算法求得
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1')
    plt.ylabel('X1')
    plt.show()

[图片上传失败...(image-59be8c-1509684862465)]

3.训练算法

缺点:
改进:每次仅用一个样本更改回归系数,这种方法就成为==随机梯度上升算法==。
# 随机梯度上升算法
def stocGradAscent0(dataMatrix,classLabels):
    # 无矩阵转换过程
    m, n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)
    for i in range(m):
        # 变量h和误差error都是数值
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = (classLabels[i]-h)
        weights = weights + alpha * error * dataMatrix[i]
    return weights

[图片上传失败...(image-f3f3bb-1509684862465)]

改进
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)   #initialize to all ones
    for j in range(numIter):
        dataIndex = list(range(m))
        for i in range(m):
            # alpha在每次迭代时不断减小,但不会减到0
            alpha = 4/(1.0+j+i)+0.0001
            # 随机选取更新
            randIndex = int(random.uniform(0, len(dataIndex)))
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            # 删除,进行下一次迭代
            del(dataIndex[randIndex])
    return weights

[图片上传失败...(image-a4d900-1509684862465)]

四.示例:预测病马的死亡率

1.问题:数据缺失

2.准备数据:处理数据的缺失值

3.测试算法:用Logistic回归进行分类

# 通过输入回归系数和特征向量来计算对应sigmoid的值
def classifyVector(inX, weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5:
        return 1.0
    else:
        return 0.0

def colicTest():
    # 导入数据
    frTrain = open('horseColicTraining.txt')
    frTest = open('horseColicTest.txt')
    trainingSet = []; trainingLabels = []
    for line in frTrain.readlines():
        currLine = line.strip().split('\t')
        lineArr =[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)
        trainingLabels.append(float(currLine[21]))
    # 导入数据完成后利用stocGradAscent1()来计算回归系数向量
    trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000)
    errorCount = 0
    numTestVec = 0.0
    # 导入测试集并计算分类错误率
    for line in frTest.readlines():
        numTestVec += 1.0
        currLine = line.strip().split('\t')
        lineArr =[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]):
            errorCount += 1
    errorRate = (float(errorCount)/numTestVec)
    print("the error rate of this test is: %f" % errorRate)
    return errorRate

# 调用colicTest()函数10次并求结果的平均值
def multiTest():
    numTests = 10
    errorSum=0.0
    for k in range(numTests):
        errorSum += colicTest()
    print("after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests)))
def loadDataSet():
    # 定义数据集和标签
    dataMat = []
    labelMat = []
    # 读取文件
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        # 初始化数据
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat, labelMat
>>> import logRegres
>>> dataArr,labelMat = logRegres.loadDataSet()
>>> logRegres.gradAscent(dataArr,labelMat)
matrix([[ 4.12414349],
        [ 0.48007329],
        [-0.6168482 ]])

#回归函数
def sigmoid(intX):
    return 1.0/(1+exp(-intX))

# 梯度上升算法
def gradAscent(dataMatIn,classLabels):
    # 转换为Numpy数据类型
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()
    # 矩阵大小
    m, n = shape(dataMatrix)
    # 步长
    alpha = 0.001
    # 迭代次数
    maxCycles = 500
    # 系数矩阵初始化为1
    weights = ones((n, 1))
    for k in range(maxCycles):
        # 变量h是一个列向量,元素个数等于样本个数
        h = sigmoid(dataMatrix*weights)
        error = (labelMat-h)
        weights = weights+alpha*dataMatrix.transpose()*error
    return weights

2.分析数据

# 画出最佳拟合直线
def plotBestFit(wei):
    import matplotlib.pyplot as plt
    # 矩阵变为数组
    weights = wei.getA()
    # 加载数据
    dataMat, labelMat = loadDataSet()
    # 转化为数组
    dataArr = array(dataMat)
    # 数据的列数目
    n = shape(dataArr)[0]
    # 用于存放类1的点
    xcord1 = []
    ycord1 = []
    # 用于存放类2的点
    xcord2 = []
    ycord2 = []
    # 遍历所有点
    for i in range(n):
        if(int(labelMat[i]) == 1):
            xcord1.append(dataArr[i, 1])
            ycord1.append(dataArr[i, 2])
        else:
            xcord2.append(dataArr[i, 1])
            ycord2.append(dataArr[i, 2])
    # 画出所有点的信息
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    # 画出分类的边界,函数的系数由之前的梯度上升算法求得
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1')
    plt.ylabel('X1')
    plt.show()

[站外图片上传中...(image-e84fb5-1509684784929)]

3.训练算法

缺点:
改进:每次仅用一个样本更改回归系数,这种方法就成为==随机梯度上升算法==。
# 随机梯度上升算法
def stocGradAscent0(dataMatrix,classLabels):
    # 无矩阵转换过程
    m, n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)
    for i in range(m):
        # 变量h和误差error都是数值
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = (classLabels[i]-h)
        weights = weights + alpha * error * dataMatrix[i]
    return weights

[站外图片上传中...(image-4eff39-1509684784929)]

改进
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)   #initialize to all ones
    for j in range(numIter):
        dataIndex = list(range(m))
        for i in range(m):
            # alpha在每次迭代时不断减小,但不会减到0
            alpha = 4/(1.0+j+i)+0.0001
            # 随机选取更新
            randIndex = int(random.uniform(0, len(dataIndex)))
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            # 删除,进行下一次迭代
            del(dataIndex[randIndex])
    return weights

[站外图片上传中...(image-322a1d-1509684784929)]

四.示例:预测病马的死亡率

1.问题:数据缺失

2.准备数据:处理数据的缺失值

3.测试算法:用Logistic回归进行分类

# 通过输入回归系数和特征向量来计算对应sigmoid的值
def classifyVector(inX, weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5:
        return 1.0
    else:
        return 0.0

def colicTest():
    # 导入数据
    frTrain = open('horseColicTraining.txt')
    frTest = open('horseColicTest.txt')
    trainingSet = []; trainingLabels = []
    for line in frTrain.readlines():
        currLine = line.strip().split('\t')
        lineArr =[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)
        trainingLabels.append(float(currLine[21]))
    # 导入数据完成后利用stocGradAscent1()来计算回归系数向量
    trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000)
    errorCount = 0
    numTestVec = 0.0
    # 导入测试集并计算分类错误率
    for line in frTest.readlines():
        numTestVec += 1.0
        currLine = line.strip().split('\t')
        lineArr =[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]):
            errorCount += 1
    errorRate = (float(errorCount)/numTestVec)
    print("the error rate of this test is: %f" % errorRate)
    return errorRate

# 调用colicTest()函数10次并求结果的平均值
def multiTest():
    numTests = 10
    errorSum=0.0
    for k in range(numTests):
        errorSum += colicTest()
    print("after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests)))
上一篇 下一篇

猜你喜欢

热点阅读