线程池与进程池

2022-12-06  本文已影响0人  测试探索

一:线程池与进程池所需包

from concurrent.futures.thread import ThreadPoolExecutor
from concurrent.futures.process import ProcessPoolExecutor

二:线程池的基本使用

from concurrent.futures.thread import ThreadPoolExecutor
from concurrent.futures.process import ProcessPoolExecutor
from queue import Queue
import time

q = Queue()


def add_data():
    """生产数据"""
    for i in range(5):
        for j in range(20):
            data = "数据--{}---{}".format(i, j)
            q.put(data)
            print("【生产数据】{}".format(data))
        time.sleep(1)


def handle_data():
    """处理数据"""
    while True:
        for i in range(4):
            try:
                data = q.get(timeout=1)
            except:
                return
            else:
                print("【处理数据】", data)
                q.task_done()
        time.sleep(1)

# -----------线程池基本使用-------------
# 创建一个线程池对象,最多四个线程
tpool = ThreadPoolExecutor(max_workers=4)

# 使用一个线程去生产数据
tpool.submit(add_data)
tpool.submit(handle_data)
tpool.submit(handle_data)
tpool.submit(handle_data)

# 等待线程池中所有的任务执行完毕之后,再继续往下执行
tpool.shutdown()
print("-------end----------")

三:线程池上下文管理协议--with

import time
from concurrent.futures.thread import ThreadPoolExecutor
from concurrent.futures.process import ProcessPoolExecutor
def work():
    for i in range(3):
        print("-----{}-------".format(i))
        time.sleep(1)


with ThreadPoolExecutor(max_workers = 5) as tp:
    for i in range(8):
        tp.submit(work)

print("---end----")

四:线程池上下文管理协议--map(与三相同的输出结果)

map进行批量任务提交,map的第一个参数为批量提交的函数,第二个参数为函数的参数

def work(name):
    for i in range(3):
        print("-----{}-------{}".format(name,i))
        time.sleep(1)

with ThreadPoolExecutor(max_workers = 5) as tp:
    tp.map(work,[1,2,3,4,5,6,7,8])

print("---end----")

五:带参数的上下文管理协议,submit和map两种方式

def work2(name,age):
    for i in range(3):
        print("-----{}----{}---{}".format(name,age,i))
        time.sleep(1)

# 使用submit
# with ThreadPoolExecutor(max_workers = 5) as tp:
#     for i in range(10):
#         tp.submit(work2,"musen",i)

# 使用map
with ThreadPoolExecutor(max_workers = 5) as tp:
    tp.map(work2,["musen","musen1"],[17,18])
print("---end--- -")

六:进程池的使用

6-1:同一个进程中多个线程之间使用的队列:

import queue
qq = queue.Queue()

6-2:进程之间数据通信的队列multiprocessing.Queue

from multiprocessing import Queue
q1 = Queue()

6-3:进程池之间数据通信

multiprocessing.Manager().Queue
import queue
from multiprocessing import Manager,Queue
from concurrent.futures.process import ProcessPoolExecutor


def work1(q):
    for i in range(10):
        q.put(i)

def work2(q):
    for i in range(10):
        print(q.get())

if __name__ == '__main__':
    q2 = Manager().Queue()

    with ProcessPoolExecutor(max_workers = 2) as pool:
        pool.submit(work1,q2)
        pool.submit(work2,q2)
上一篇下一篇

猜你喜欢

热点阅读