机器人地图分类

2019-05-24  本文已影响0人  Young1217

参见:https://blog.csdn.net/Changer_sun/article/details/79147446
地图有很多种表示方式,例如,用经纬度标识地方的世界地图,城市的地铁图,校园指引图。

第一种我们称为尺度地图(Metric Map),每一个地点都可以用坐标来表示,比如北京在东经116°23′17'',北纬39°54′27'';

第二种我们称为拓扑地图(Topological Map),每一个地点用一个点来表示,用边来连接相邻的点,即图论中的图(Graph),比如从地铁路线图中我们知道地铁红磡站与旺角东站和尖东站相连;

第三种我们称为语义地图(Semantic Map),其中每一个地点和道路都会用标签的集合来表示,例如,有人问我中山大学教学楼E栋在哪里,我会说在图书馆正门右手边靠近图书馆的一侧。

在机器人领域,尺度地图常用于定位于地图构建(Mapping)、定位(Localization)和同时定位与地图构建(Simultaneous Localization And Mapping,SLAM),拓扑地图常用于路径规划(Path Planning),而语义地图常用于人机交互(Human Robot Interaction)。

这里我们将介绍如何用机器人传感器数据绘制尺度地图。这有什么难点呢?首先也是最重要的一点,传感器数据有噪音。用激光传感器检测前方障碍物距离机器人多远,不可能检测到一个准确的数值。如果准确值是1.414米,有时会测出1.42米,有时甚至1.35米。另外,传感器数据是本地坐标系的,而机器人要构建的是一个全局的地图。最后,机器人会运动,运动也是有噪音的。总结起来就两个字,噪音。通俗点来讲,“不准”。

上一篇 下一篇

猜你喜欢

热点阅读