操作系统常见面试问题

2020-07-13  本文已影响0人  加油11dd23

一、操作系统基础

1、请你说一说并发(concurrency)和并行(parallelism)

并发(concurrency):指宏观上看起来两个程序在同时运行,比如说在单核cpu上的多任务。但是从微观上看两个程序的指令是交织着运行的,你的指令之间穿插着我的指令,我的指令之间穿插着你的,在单个周期内只运行了一个指令。这种并发并不能提高计算机的性能,只能提高效率。

并行(parallelism):指严格物理意义上的同时运行,比如多核cpu,两个程序分别运行在两个核上,两者之间互不影响,单个周期内每个程序都运行了自己的指令,也就是运行了两条指令。这样说来并行的确提高了计算机的效率。所以现在的cpu都是往多核方面发展。

2、操作系统的功能

(1)管理

处理机管理

存储器管理

文件管理

设备管理

(2)接口

命令接口

程序接口

3、操作系统特征:

并发、共享、虚拟、异步

4、一个程序从开始运行到结束的完整过程(四个过程)

1、预处理:条件编译,头文件包含,宏替换的处理,生成.i文件。

2、编译:将预处理后的文件转换成汇编语言,生成.s文件

3、汇编:汇编变为目标代码(机器代码)生成.o的文件

4、链接:连接目标代码,生成可执行程序

5、中断与系统调用

所谓的中断就是在计算机执行程序的过程中,由于出现了某些特殊事情,使得CPU暂停对程序的执行,转而去执行处理这一事件的程序。等这些特殊事情处理完之后再回去执行之前的程序。中断一般分为三类:

由计算机硬件异常或故障引起的中断,称为内部异常中断

由程序中执行了引起中断的指令而造成的中断,称为软中断(这也是和我们将要说明的系统调用相关的中断);

由外部设备请求引起的中断,称为外部中断。简单来说,对中断的理解就是对一些特殊事情的处理。

与中断紧密相连的一个概念就是中断处理程序了。当中断发生的时候,系统需要去对中断进行处理,对这些中断的处理是由操作系统内核中的特定函数进行的,这些处理中断的特定的函数就是我们所说的中断处理程序了。

另一个与中断紧密相连的概念就是中断的优先级。中断的优先级说明的是当一个中断正在被处理的时候,处理器能接受的中断的级别。中断的优先级也表明了中断需要被处理的紧急程度。每个中断都有一个对应的优先级,当处理器在处理某一中断的时候,只有比这个中断优先级高的中断可以被处理器接受并且被处理。优先级比这个当前正在被处理的中断优先级要低的中断将会被忽略。

典型的中断优先级如下所示:

机器错误 > 时钟 > 磁盘 > 网络设备 > 终端 > 软件中断

在讲系统调用之前,先说下进程的执行在系统上的两个级别:用户级和核心级,也称为用户态和系统态(user mode and kernel mode)

用户空间就是用户进程所在的内存区域,相对的,系统空间就是操作系统占据的内存区域。用户进程和系统进程的所有数据都在内存中。处于用户态的程序只能访问用户空间,而处于内核态的程序可以访问用户空间和内核空间。

用户态切换到内核态的方式如下:

系统调用:程序的执行一般是在用户态下执行的,但当程序需要使用操作系统提供的服务时,比如说打开某一设备、创建文件、读写文件(这些均属于系统调用)等,就需要向操作系统发出调用服务的请求,这就是系统调用。

异常:当CPU在执行运行在用户态下的程序时,发生了某些事先不可知的异常,这时会触发由当前运行进程切换到处理此异常的内核相关程序中,也就转到了内核态,比如缺页异常。

外围设备的中断:当外围设备完成用户请求的操作后,会向CPU发出相应的中断信号,这时CPU会暂停执行下一条即将要执行的指令转而去执行与中断信号对应的处理程序,如果先前执行的指令是用户态下的程序,那么这个转换的过程自然也就发生了由用户态到内核态的切换。比如硬盘读写操作完成,系统会切换到硬盘读写的中断处理程序中执行后续操作等。

用户态和核心态(内核态)之间的区别是什么呢?

       权限不一样。

       用户态的进程能存取它们自己的指令和数据,但不能存取内核指令和数据(或其他进程的指令和数据)。

       核心态下的进程能够存取内核和用户地址某些机器指令是特权指令,在用户态下执行特权指令会引起错误。在系统中内核并不是作为一个与用户进程平行的估计的进程的集合。

6、中断分类

1. 外中断

CPU 执行指令以外的事件引起,如 I/O 完成中断,表示设备输入/输出处理已经完成,处理器能够发送下一个输入/输出请求。此外还有时钟中断、控制台中断等。

2. 异常

CPU 执行指令的内部事件引起,如非法操作码、地址越界、算术溢出等。

3. 陷入

在用户程序中使用系统调用

7、什么是中断?中断时CPU做什么工作?

  中断是指在计算机执行期间,系统内发生任何非寻常的或非预期的急需处理事件,使得CPU暂时中断当前正在执行的程序而转去执行相应的事件处理程序。待处理完毕后又返回原来被中断处继续执行或调度新的进程执行的过程。

二、进程管理

1、进程、线程的区别

进程:是具有一定独立功能的程序、它是系统进行资源分配和调度的一个独立单位,重点在系统调度和单独的单位,也就是说进程是可以独立运行的一段程序。

线程:是进程的一个实体,是CPU调度和分派的基本单位,比进程更小的能独立运行的基本单位,线程自己基本上不拥有系统资源,在运行时,只是暂用一些计数器、寄存器和栈 。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间。

一个程序至少有一个进程,一个进程至少有一个线程。

2、请你说一下多进程、多线程,操作系统层面的差别和联系

进程:进程是一个具有一定独立功能的程序在一个数据集上的一次动态执行的过程,是操作系统进行资源分配和调度的一个独立单位,是应用程序运行的载体。进程是一种抽象的概念,从来没有统一的标准定义。进程一般由程序、数据集合和进程控制块三部分组成。程序用于描述进程要完成的功能,是控制进程执行的指令集;数据集合是程序在执行时所需要的数据和工作区;程序控制块(Program Control Block,简称PCB),包含进程的描述信息和控制信息,是进程存在的唯一标志。

线程:在早期的操作系统中并没有线程的概念,进程是能拥有资源和独立运行的最小单位,也是程序执行的最小单位。任务调度采用的是时间片轮转的抢占式调度方式,而进程是任务调度的最小单位,每个进程有各自独立的一块内存,使得各个进程之间内存地址相互隔离。后来,随着计算机的发展,对CPU的要求越来越高,进程之间的切换开销较大,已经无法满足越来越复杂的程序的要求了。于是就发明了线程,线程是程序执行中一个单一的顺序控制流程,是程序执行流的最小单元,是处理器调度和分派的基本单位。一个进程可以有一个或多个线程,各个线程之间共享程序的内存空间(也就是所在进程的内存空间)。一个标准的线程由线程ID、当前指令指针(PC)、寄存器和堆栈组成。而进程由内存空间(代码、数据、进程空间、打开的文件)和一个或多个线程组成。

差别:1.线程是程序执行的最小单位,而进程是操作系统分配资源的最小单位2.一个进程由一个或多个线程组成,线程是一个进程中代码的不同执行路线;3.进程之间相互独立,但同一进程下的各个线程之间共享程序的内存空间(包括代码段、数据集、堆等)及一些进程级的资源(如打开文件和信号),某进程内的线程在其它进程不可见;4.调度和切换:线程上下文切换比进程上下文切换要快得多。

联系:原则上一个CPU只能分配给一个进程,以便运行这个进程。通常使用的计算机中只有一个CPU,同时运行多个进程,就必须使用并发技术。通常采用时间片轮转进程调度算法,在操作系统的管理下,所有正在运行的进程轮流使用CPU,每个进程允许占用CPU的时间非常短(比如10毫秒),这样用户根本感觉不出来CPU是在轮流为多个进程服务,就好象所有的进程都在不间断地运行一样。但实际上在任何一个时间内有且仅有一个进程占有CPU。如果一台计算机有多个CPU,情况就不同了,如果进程数小于CPU数,则不同的进程可以分配给不同的CPU来运行,这样,多个进程就是真正同时运行的,这便是并行。但如果进程数大于CPU数,则仍然需要使用并发技术。在Windows中,进行CPU分配是以线程为单位的,一个进程可能由多个线程组成。操作系统将CPU的时间片分配给多个线程,每个线程在操作系统指定的时间片内完成(注意,这里的多个线程是分属于不同进程的).操作系统不断的从一个线程的执行切换到另一个线程的执行,如此往复,宏观上看来,就好像是多个线程在一起执行.由于这多个线程分属于不同的进程,就好像是多个进程在同时执行,这样就实现了多任务。总线程数<=CPU数量时并行运行,总线程数>CPU数量时并发运行。并行运行的效率显然高于并发运行,所以在多CPU的计算机中,多任务的效率比较高。但是,如果在多CPU计算机中只运行一个进程(线程),就不能发挥多CPU的优势。

3、 请你说一下进程与线程的概念,以及为什么要有进程线程,其中有什么区别,他们各自又是怎么同步的

(1)概念

进程是对运行时程序的封装,是系统进行资源调度和分配的的基本单位,实现了操作系统的并发;

线程是进程的子任务,是CPU调度和分派的基本单位,用于保证程序的实时性,实现进程内部的并发;线程是操作系统可识别的最小执行和调度单位。每个线程都独自占用一个虚拟处理器:独自的寄存器组,指令计数器和处理器状态。每个线程完成不同的任务,但是共享同一地址空间(也就是同样的动态内存,映射文件,目标代码等等),打开的文件队列和其他内核资源。

(2)区别:

1.一个线程只能属于一个进程,而一个进程可以有多个线程,但至少有一个线程。线程依赖于进程而存在。

2.进程在执行过程中拥有独立的内存单元,而多个线程共享进程的内存。(资源分配给进程,同一进程的所有线程共享该进程的所有资源。同一进程中的多个线程共享代码段(代码和常量),数据段(全局变量和静态变量),扩展段(堆存储)。但是每个线程拥有自己的栈段,栈段又叫运行时段,用来存放所有局部变量和临时变量。)

3.进程是资源分配的最小单位,线程是CPU调度的最小单位;

4.系统开销: 由于在创建或撤消进程时,系统都要为之分配或回收资源,如内存空间、I/o设备等。因此,操作系统所付出的开销将显著地大于在创建或撤消线程时的开销。类似地,在进行进程切换时,涉及到整个当前进程CPU环境的保存以及新被调度运行的进程的CPU环境的设置。而线程切换只须保存和设置少量寄存器的内容,并不涉及存储器管理方面的操作。可见,进程切换的开销也远大于线程切换的开销。

5.通信:由于同一进程中的多个线程具有相同的地址空间,致使它们之间的同步和通信的实现,也变得比较容易。进程间通信IPC,线程间可以直接读写进程数据段(如全局变量)来进行通信——需要进程同步和互斥手段的辅助,以保证数据的一致性。在有的系统中,线程的切换、同步和通信都无须操作系统内核的干预

6.进程编程调试简单可靠性高,但是创建销毁开销大;线程正相反,开销小,切换速度快,但是编程调试相对复杂。

7.进程间不会相互影响 ;线程一个线程挂掉将导致整个进程挂掉

8.进程适应于多核、多机分布;线程适用于多核

(3)进程间通信的方式:

进程间通信主要包括管道、系统IPC(包括消息队列、信号量、信号、共享内存等)、以及套接字socket。

1.管道:

管道主要包括无名管道和命名管道:管道可用于具有亲缘关系的父子进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信

1.1 普通管道PIPE:

1)它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端

2)它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)

3)它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。

1.2 命名管道FIFO:

1)FIFO可以在无关的进程之间交换数据

2)FIFO有路径名与之相关联,它以一种特殊设备文件形式存在于文件系统中。

2. 系统IPC:

2.1 消息队列

消息队列,是消息的链接表,存放在内核中。一个消息队列由一个标识符(即队列ID)来标记。 (消息队列克服了信号传递信息少,管道只能承载无格式字节流以及缓冲区大小受限等特点)具有写权限得进程可以按照一定得规则向消息队列中添加新信息;对消息队列有读权限得进程则可以从消息队列中读取信息;

特点:

1)消息队列是面向记录的,其中的消息具有特定的格式以及特定的优先级。

2)消息队列独立于发送与接收进程。进程终止时,消息队列及其内容并不会被删除。

3)消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取。

2.2 信号量semaphore

信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器,可以用来控制多个进程对共享资源的访问。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。

特点:

1)信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。

2)信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。

3)每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。

4)支持信号量组。

2.3 信号signal

信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。

2.4 共享内存(Shared Memory)

它使得多个进程可以访问同一块内存空间,不同进程可以及时看到对方进程中对共享内存中数据得更新。这种方式需要依靠某种同步操作,如互斥锁和信号量等

特点:

1)共享内存是最快的一种IPC,因为进程是直接对内存进行存取

2)因为多个进程可以同时操作,所以需要进行同步

3)信号量+共享内存通常结合在一起使用,信号量用来同步对共享内存的访问

3.套接字SOCKET:

socket也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同主机之间的进程通信。

(4)线程间通信的方式:

临界区:通过多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问;

互斥量Synchronized/Lock:采用互斥对象机制,只有拥有互斥对象的线程才有访问公共资源的权限。因为互斥对象只有一个,所以可以保证公共资源不会被多个线程同时访问

信号量Semphare:为控制具有有限数量的用户资源而设计的,它允许多个线程在同一时刻去访问同一个资源,但一般需要限制同一时刻访问此资源的最大线程数目。

事件(信号)Wait/Notify:通过通知操作的方式来保持多线程同步,还可以方便的实现多线程优先级的比较操作

4、实现进程同步的方法

(1)、临界区(Critical Section)

通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问。

优点:保证在某一时刻只有一个线程能访问数据的简便办法

缺点:虽然临界区同步速度很快,但却只能用来同步本进程内的线程,而不可用来同步多个进程中的线程。

(2)、互斥量(Mutex)

为协调共同对一个共享资源的单独访问而设计的。

互斥量跟临界区很相似,比临界区复杂,互斥对象只有一个,只有拥有互斥对象的线程才具有访问资源的权限。

优点:使用互斥不仅仅能够在同一应用程序不同线程中实现资源的安全共享,而且可以在不同应用程序的线程之间实现对资源的安全共享。

缺点:①互斥量是可以命名的,也就是说它可以跨越进程使用,所以创建互斥量需要的资源更多,所以如果只为了在进程内部是用的话使用临界区会带来速度上的优势并能够减少资源占用量。因为互斥量是跨进程的互斥量一旦被创建,就可以通过名字打开它。

②通过互斥量可以指定资源被独占的方式使用,但如果有下面一种情况通过互斥量就无法处理,比如现在一位用户购买了一份三个并发访问许可的数据库系统,可以根据用户购买的访问许可数量来决定有多少个线程/进程能同时进行数据库操作,这时候如果利用互斥量就没有办法完成这个要求,信号量对象可以说是一种资源计数器。

(3)、信号量(Semaphore)【最常用】

为控制一个具有有限数量用户资源而设计。它允许多个线程在同一时刻访问同一资源,但是需要限制在同一时刻访问此资源的最大线程数目。互斥量是信号量的一种特殊情况,当信号量的最大资源数=1就是互斥量了。

优点:适用于对Socket(套接字)程序中线程的同步。(例如,网络上的HTTP服务器要对同一时间内访问同一页面的用户数加以限制,只有不大于设定的最大用户数目的线程能够进行访问,而其他的访问企图则被挂起,只有在有用户退出对此页面的访问后才有可能进入。)

缺点:①信号量机制必须有公共内存,不能用于分布式操作系统,这是它最大的弱点;

②信号量机制功能强大,但使用时对信号量的操作分散, 而且难以控制,读写和维护都很困难,加重了程序员的编码负担;

③核心操作P-V分散在各用户程序的代码中,不易控制和管理,一旦错误,后果严重,且不易发现和纠正。

(4)、事件(Event)

用来通知线程有一些事件已发生,从而启动后继任务的开始。

优点:事件对象通过通知操作的方式来保持线程的同步,并且可以实现不同进程中的线程同步操作。

5、进程间通信的方式

(1)信号量

(2)消息队列

(3)共享内存

(4)管道


(5)信号

(6)套接字

6、请你说一说死锁发生的条件以及如何解决死锁

死锁是指两个或两个以上进程在执行过程中,因争夺资源而造成的下相互等待的现象。

死锁发生的四个必要条件如下:

互斥条件:进程对所分配到的资源不允许其他进程访问,若其他进程访问该资源,只能等待,直至占有该资源的进程使用完成后释放该资源;

不可剥夺条件:进程已获得的资源,在未完成使用之前,不可被剥夺,只能在使用后自己释放

请求和保持条件:进程获得一定的资源后,又对其他资源发出请求,但是该资源可能被其他进程占有,此时请求阻塞,但该进程不会释放自己已经占有的资源

环路等待条件:进程发生死锁后,必然存在一个进程-资源之间的环形链

解决死锁的方法即破坏上述四个条件之一,主要方法如下:

(1)死锁预防

资源一次性分配,从而剥夺请求和保持条件

可剥夺资源:即当进程新的资源未得到满足时,释放已占有的资源,从而破坏不可剥夺的条件

资源有序分配法:系统给每类资源赋予一个序号,每个进程按编号递增的请求资源,释放则相反,从而破坏环路等待的条件

(2)死锁避免

银行家算法

(3)死锁检测

资源分配图

资源剥夺法

撤销进程法

进程回退法

7、进程有哪几种状态?

就绪状态:进程已获得除处理机以外的所需资源,等待分配处理机资源

运行状态:占用处理机资源运行,处于此状态的进程数小于等于CPU数

阻塞状态: 进程等待某种条件,在条件满足之前无法执行

8、内存池、进程池、线程池。

首先介绍一个概念“池化技术 ”。池化技术就是:提前保存大量的资源,以备不时之需以及重复使用。池化技术应用广泛,如内存池,线程池,连接池等等。内存池相关的内容,建议看看Apache、Nginx等开源web服务器的内存池实现。

    由于在实际应用当做,分配内存、创建进程、线程都会设计到一些系统调用,系统调用需要导致程序从用户态切换到内核态,是非常耗时的操作。因此,当程序中需要频繁的进行内存申请释放,进程、线程创建销毁等操作时,通常会使用内存池、进程池、线程池技术来提升程序的性能。

线程池:线程池的原理很简单,类似于操作系统中的缓冲区的概念,它的流程如下:先启动若干数量的线程,并让这些线程都处于睡眠状态,当需要一个开辟一个线程去做具体的工作时,就会唤醒线程池中的某一个睡眠线程,让它去做具体工作,当工作完成后,线程又处于睡眠状态,而不是将线程销毁。

进程池与线程池同理。

内存池:内存池是指程序预先从操作系统申请一块足够大内存,此后,当程序中需要申请内存的时候,不是直接向操作系统申请,而是直接从内存池中获取;同理,当程序释放内存的时候,并不真正将内存返回给操作系统,而是返回内存池。当程序退出(或者特定时间)时,内存池才将之前申请的内存真正释放。

9、同步和互斥的区别

        当有多个线程的时候,经常需要去同步这些线程以访问同一个数据或资源。例如,假设有一个程序,其中一个线程用于把文件读到内存,而另一个线程用于统计文件中的字符数。当然,在把整个文件调入内存之前,统计它的计数是没有意义的。但是,由于每个操作都有自己的线程,操作系统会把两个线程当作是互不相干的任务分别执行,这样就可能在没有把整个文件装入内存时统计字数。为解决此问题,你必须使两个线程同步工作。

所谓同步,是指散步在不同进程之间的若干程序片断,它们的运行必须严格按照规定的某种先后次序来运行,这种先后次序依赖于要完成的特定的任务。如果用对资源的访问来定义的话,同步是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源。

所谓互斥,是指散布在不同进程之间的若干程序片断,当某个进程运行其中一个程序片段时,其它进程就不能运行它们之中的任一程序片段,只能等到该进程运行完这个程序片段后才可以运行。如果用对资源的访问来定义的话,互斥某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的。

10、守护、僵尸、孤儿进程的概念

守护进程:运行在后台的一种特殊进程,独立于控制终端并周期性地执行某些任务。

僵尸进程:一个进程 fork 子进程,子进程退出,而父进程没有wait/waitpid子进程,那么子进程的进程描述符仍保存在系统中,这样的进程称为僵尸进程。

孤儿进程:一个父进程退出,而它的一个或多个子进程还在运行,这些子进程称为孤儿进程。(孤儿进程将由 init 进程收养并对它们完成状态收集工作)

11、Semaphore(信号量) Vs Mutex(互斥锁)

当用户创立多个线程/进程时,如果不同线程/进程同时读写相同的内容,则可能造成读写错误,或者数据不一致。此时,需要通过加锁的方式,控制临界区(critical section)的访问权限。对于semaphore而言,在初始化变量的时候可以控制允许多少个线程/进程同时访问一个临界区,其他的线程/进程会被堵塞,直到有人解锁。

Mutex相当于只允许一个线程/进程访问的semaphore。此外,根据实际需要,人们还实现了一种读写锁(read-write lock),它允许同时存在多个阅读者(reader),但任何时候至多只有一个写者(writer),且不能于读者共存。

12、线程是否具有相同的堆栈?dll是否有独立的堆栈?

  每个线程有自己的堆栈。

  dll是否有独立的堆栈?这个问题不好回答,或者说这个问题本身是否有问题。因为dll中的代码是被某些线程所执行,只有线程拥有堆栈。如果dll中的代码是exe中的线程所调用,那么这个时候是不是说这个dll没有独立的堆栈?如果dll中的代码是由dll自己创建的线程所执行,那么是不是说dll有独立的堆栈?

  以上讲的是堆栈,如果对于堆来说,每个dll有自己的堆,所以如果是从dll中动态分配的内存,最好是从dll中删除;如果你从dll中分配内存,然后在exe中,或者另外一个dll中删除,很有可能导致程序崩溃。

13、 进程与线程的区别

(1)      粒度性分析:线程的粒度小于进程。

(2)      调度性分析:进程是资源拥有的基本单位,线程是独立调度与独立运行的基本单位,出了寄存器,程序计数器等必要的资源外基本不拥有其他资源。

(3)      系统开销分析:由于线程基本不拥有系统资源,所以在进行切换时,线程切换的开销远远小于进程。

三、处理器管理

1、 操作系统中进程调度策略有哪几种?

(1)先来先服务和段作业优先算法(a.先来先服务调度算法;b。短作业(进程)优先调度算法)

(2)高优先权优先调度算法(a.非抢占式优先权算法;b.抢占式优先权调度算法;c.高响应比优先调度算法)

(3)基于时间片的轮转调度算法(a.时间片轮转法;b.多级反馈队列调度算法)

2、什么是上下文切换

对于单核单线程CPU而言,在某一时刻只能执行一条CPU指令。上下文切换(Context Switch)是一种将CPU资源从一个进程分配给另一个进程的机制。从用户角度看,计算机能够并行运行多个进程,这恰恰是操作系统通过快速上下文切换造成的结果。在切换的过程中,操作系统需要先存储当前进程的状态(包括内存空间的指针,当前执行完的指令等等),再读入下一个进程的状态,然后执行此进程。

3、进程调度算法

先来先服务调度算法FCFS:既可以作为作业调度算法也可以作为进程调度算法;按作业或者进程到达的先后顺序依次调度;因此对于长作业比较有利;

短作业优先调度算法SJF:作业调度算法,算法从就绪队列中选择估计时间最短的作业进行处理,直到得出结果或者无法继续执行;缺点:不利于长作业;未考虑作业的重要性;运行时间是预估的,并不靠谱 ;

高相应比算法HRN:响应比=(等待时间+要求服务时间)/要求服务时间;

时间片轮转调度RR:按到达的先后对进程放入队列中,然后给队首进程分配CPU时间片,时间片用完之后计时器发出中断,暂停当前进程并将其放到队列尾部,循环 ;

多级反馈队列调度算法:目前公认较好的调度算法;设置多个就绪队列并为每个队列设置不同的优先级,第一个队列优先级最高,其余依次递减。优先级越高的队列分配的时间片越短,进程到达之后按FCFS放入第一个队列,如果调度执行后没有完成,那么放到第二个队列尾部等待调度,如果第二次调度仍然没有完成,放入第三队列尾部…。只有当前一个队列为空的时候才会去调度下一个队列的进程。

四、内存管理

1、请你说一说Linux虚拟地址空间

为了防止不同进程同一时刻在物理内存中运行而对物理内存的争夺和践踏,采用了虚拟内存。

虚拟内存技术使得不同进程在运行过程中,它所看到的是自己独自占有了当前系统的4G内存。所有进程共享同一物理内存,每个进程只把自己目前需要的虚拟内存空间映射并存储到物理内存上。 事实上,在每个进程创建加载时,内核只是为进程“创建”了虚拟内存的布局,具体就是初始化进程控制表中内存相关的链表,实际上并不立即就把虚拟内存对应位置的程序数据和代码(比如.text .data段)拷贝到物理内存中,只是建立好虚拟内存和磁盘文件之间的映射就好(叫做存储器映射),等到运行到对应的程序时,才会通过缺页异常,来拷贝数据。还有进程运行过程中,要动态分配内存,比如malloc时,也只是分配了虚拟内存,即为这块虚拟内存对应的页表项做相应设置,当进程真正访问到此数据时,才引发缺页异常。

【王道】

定义:基于局部性原理,在程序装入时,将程序的一部分装入内存,而将其与部分留在外存,就可启动程序执行。在程序执行过程中,当所访问的信息不在内存时,由操作系统将所需要的部分调入内存,然后继续执行程序。另一方面,操作系统将内存中暂时不使用的内容换出到外存上,从而腾出空间存放将要调入内存的信息。这样,系统好像为用户提供了一个比实际内存大得多的存储器,成为虚拟存储器。

实现方式:分段,分页,段页

2、请你说一说操作系统中的缺页中断

定义:在请求分页系统中,每当所要访问的页面不在内存中时,便产生一个缺页中断,请求操作系统将所缺的页调入内存。此时应将缺页的进程阻塞(调页完成唤醒),若内存中有空闲块,则分配一个块,将要调入的页装入该块,并修改页表中的相应页表项,若此时内存中没有空闲块,则要淘汰某页(若被淘汰页在内存期间被修改过,则要将其写回外存)。

处理机制:

1、保护CPU现场

2、分析中断原因

3、转入缺页中断处理程序进行处理

4、恢复CPU现场,继续执行

但是缺页中断是由于所要访问的页面不存在于内存时,由硬件所产生的一种特殊的中断,因此,与一般的中断存在区别:

1、在指令执行期间产生和处理缺页中断信号

2、一条指令在执行期间,可能产生多次缺页中断

3、缺页中断返回是,执行产生中断的一条指令,而一般的中断返回是,执行下一条指令。

3、请你说一说OS缺页置换算法

当访问一个内存中不存在的页,并且内存已满,则需要从内存中调出一个页或将数据送至磁盘对换区,替换一个页,这种现象叫做缺页置换。当前操作系统最常采用的缺页置换算法如下:

先进先出(FIFO)算法:置换最先调入内存的页面,即置换在内存中驻留时间最久的页面。按照进入内存的先后次序排列成队列,从队尾进入,从队首删除。

最近最少使用(LRU)算法: 置换最近一段时间以来最长时间未访问过的页面。根据程序局部性原理,刚被访问的页面,可能马上又要被访问;而较长时间内没有被访问的页面,可能最近不会被访问。

当前最常采用的就是LRU算法。f

4、你怎么理解操作系统里的内存碎片,有什么解决办法?

内存碎片分为:内部碎片和外部碎片。

内部碎片就是已经被分配出去(能明确指出属于哪个进程)却不能被利用的内存空间;

内部碎片是处于区域内部或页面内部的存储块。占有这些区域或页面的进程并不使用这个存储块。而在进程占有这块存储块时,系统无法利用它。直到进程释放它,或进程结束时,系统才有可能利用这个存储块。

单道连续分配只有内部碎片。多道固定连续分配既有内部碎片,又有外部碎片。

外部碎片指的是还没有被分配出去(不属于任何进程),但由于太小了无法分配给申请内存空间的新进程的内存空闲区域。

外部碎片是出于任何已分配区f域或页面外部的空闲存储块。这些存储块的总和可以满足当前申请的长度要求,但是由于它们的地址不连续或其他原因,使得系统无法满足当前申请。

使用伙伴系统算法。

5、抖动

在页面置换过程中,一种最糟糕的情形是刚刚换出的页面马上又要换入主存,刚刚换入的页面马上又要换出主存,这种频繁的页面调度行为称为抖动或频繁。

6、分页和分段有什么区别?

段是信息的逻辑单位,它是根据用户的需要划分的,因此段对用户是可见的 ;页是信息的物理单位,是为了管理主存的方便而划分的,对用户是透明的。

段的大小不固定,有它所完成的功能决定;页大大小固定,由系统决定

向用户提供二维地址空间;页向用户提供的是一维地址空间【页号P 页内位移量W】

(分页的作业地址空间是一维的.分段的地址空间是二维的)

段是信息的逻辑单位,便于存储保护和信息的共享,页的保护和共享受到限制。

7、局部性原理

(1). 时间上的局部性:最近被访问的页在不久的将来还会被访问;

(2). 空间上的局部性:内存中被访问的页周围的页也很可能被访问。

五、输入输出管理

1、什么是缓冲区溢出?有什么危害?其原因是什么?

缓冲区溢出是指当计算机向缓冲区填充数据时超出了缓冲区本身的容量,溢出的数据覆盖在合法数据上。

危害有以下两点:

程序崩溃,导致拒绝额服务

跳转并且执行一段恶意代码

造成缓冲区溢出的主要原因是程序中没有仔细检查用户输入。

网图 网图

附录:

知识点:

【最全】https://www.bookstack.cn/read/Interview-Notebook/notes-%E8%AE%A1%E7%AE%97%E6%9C%BA%E6%93%8D%E4%BD%9C%E7%B3%BB%E7%BB%9F.md

https://blog.csdn.net/LonelyPlanet_/article/details/89115669?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-3.nonecase&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-3.nonecase

https://cloud.tencent.com/developer/article/1427292

https://my.oschina.net/u/1186503/blog/1632610

https://cloud.tencent.com/developer/article/1383230

https://juejin.im/entry/592257b62f301e006b183b95

https://blog.csdn.net/eseaqyq/article/details/7887168?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.nonecase&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.nonecase

上一篇 下一篇

猜你喜欢

热点阅读