深度学习框架--学习之旅

Pytorch基础篇--2

2019-07-19  本文已影响2人  布口袋_天晴了

源码:github code
pytorch逻辑回归的例子
手写数字识别数据从官网下载太慢,可以从这下载:百度网盘

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms

# Hyper-parameters
# 超参设置
input_size = 784
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001

# MNIST dataset (images and labels)
# 手写数字识别数据下载
train_dataset = torchvision.datasets.MNIST(root='../../data',
                                           train=True,
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='../../data',
                                          train=False,
                                          transform=transforms.ToTensor())

# Data loader (input pipeline)
# 数据加载
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size,
                                          shuffle=False)

# Logistic regression model
# 逻辑回归模型
model = nn.Linear(input_size, num_classes)

# Loss and optimizer
# nn.CrossEntropyLoss() computes softmax internally
# 交叉熵损失函数
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

# Train the model
# 模型训练
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        # Reshape images to (batch_size, input_size)
        images = images.reshape(-1, 28 * 28)

        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)

        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i + 1) % 100 == 0:
            print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
                  .format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))

# Test the model
# 模型测试
# In test phase, we don't need to compute gradients (for memory efficiency)
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, 28 * 28)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum()

    print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
# 模型保存
torch.save(model.state_dict(), 'model.ckpt')
数据下载位置
上一篇下一篇

猜你喜欢

热点阅读