Vaart, A. W. van der (1998), Asy

2020-11-15  本文已影响0人  陈灿贻

Vaart, A. W. van der (1998), Asymptotic statistics, Cambridge series in statistical and probabilistic mathematics, Cambridge, UK ; New York, NY, USA: Cambridge University Press. Exercise 18.6

It suffice to prove for [-u,u). For any \epsilon>0, let
\begin{align*} A& :=\left\{z \in[-u, u]: \exists \delta>0, m\in\mathbb{N}, u_i\in[-u,z], i = 1,\ldots, m, s.t.,\right.\\ & \left. \bigcup_{i = 1}^{m - 1}[u_i, u_{i + 1}) = [-u,z), \forall x, y \in [u_i,u_{i+1}), |x-y|<\delta, |h(x) - h(y)|<\epsilon\right\} \end{align*}
Let \mathcal{U}(z):=\{[u_i,u_{i+1}): i = 1,\ldots, m\}. Because h is right-continuous at -u, we have -u\in A. Then A\neq \varnothing and u is an upper bound of A. Let c:=\sup A. By the supremum and infimum principle, it suffices to prove c \in A and c = u.

1^\prime Obviously, we have c\in[-u, u]. Because h has left limit in c, there exist \delta_1>0 such that for any x, y \in [c-\delta_1, c), |h(x) - h(y)|<\epsilon. For \delta_1/2>0, by definition of supremum, there exist \alpha\in A such that \alpha>c - \delta_1/2. Without loss of generality, assume \alpha\leq c. Let \mathcal{U}(c):=\mathcal{U}(x)\cup [\alpha, c). Hence for any \mathcal{S}\in\mathcal{U}(c), and x, y\in\mathcal{S}, we have |h(x) -h(y)|<\epsilon. It follows c\in A.

2^\prime As for c = u, noting that if c< u, we can find z:= c + (u-c)3/4 such that z>c + (u-c)/2 and z\in A. This contracts the fact c=\sup A.

Combining 1^\prime and 2^\prime, we complete the proof.

上一篇下一篇

猜你喜欢

热点阅读