程序猿日记MXNET机器学习与数据挖掘

Tensorflow 的NCE-Loss的实现和word2vec

2016-07-20  本文已影响15427人  xlvector

这两天因为实现mxnetnce-loss,因此研究了一下tensorflow的nce-loss的实现。所以总结一下。

先看看tensorflow的nce-loss的API:

def nce_loss(weights, biases, inputs, labels, num_sampled, num_classes,
             num_true=1,
             sampled_values=None,
             remove_accidental_hits=False,
             partition_strategy="mod",
             name="nce_loss")

假设nce_loss之前的输入数据是K维的,一共有N个类,那么

nce_loss的实现逻辑如下:

再来看看TF里word2vec的实现,他用到nce_loss的代码如下:

  loss = tf.reduce_mean(
      tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels,
                     num_sampled, vocabulary_size))

可以看到,它这里并没有传sampled_values,那么它的负样本是怎么得到的呢?继续看nce_loss的实现,可以看到里面处理sampled_values=None的代码如下:

    if sampled_values is None:
      sampled_values = candidate_sampling_ops.log_uniform_candidate_sampler(
          true_classes=labels,
          num_true=num_true,
          num_sampled=num_sampled,
          unique=True,
          range_max=num_classes)

所以,默认情况下,他会用log_uniform_candidate_sampler去采样。那么log_uniform_candidate_sampler是怎么采样的呢?他的实现在这里

可以看到,k越大,被采样到的概率越小。那么在TF的word2vec里,类别的编号有什么含义吗?看下面的代码:

def build_dataset(words):
  count = [['UNK', -1]]
  count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
  dictionary = dict()
  for word, _ in count:
    dictionary[word] = len(dictionary)
  data = list()
  unk_count = 0
  for word in words:
    if word in dictionary:
      index = dictionary[word]
    else:
      index = 0  # dictionary['UNK']
      unk_count += 1
    data.append(index)
  count[0][1] = unk_count
  reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
  return data, count, dictionary, reverse_dictionary

可以看到,TF的word2vec实现里,词频越大,词的类别编号也就越大。因此,在TF的word2vec里,负采样的过程其实就是优先采词频高的词作为负样本。

在提出负采样的原始论文中, 包括word2vec的原始C++实现中。是按照热门度的0.75次方采样的,这个和TF的实现有所区别。但大概的意思差不多,就是越热门,越有可能成为负样本。

上一篇下一篇

猜你喜欢

热点阅读