大数据,机器学习,人工智能机器学习与数据挖掘人工智能/模式识别/机器学习精华专题

机器学习算法——线性回归LinearRegression

2019-09-30  本文已影响0人  皮皮大

线性回归法

思想

分类问题中,横轴和纵轴都是样本特征属性(肿瘤大小,肿瘤发现时间)

问题产生

image.png

最小二乘法求解a,b

求解损失函数J(a,b)的过程:J(a,b) = \mathop {min}\sum ^{m}_{i=1} ({y^{i}-ax^{(i)}-b})^2
分别对a,b求导,在令导数为0,进行求解最终结果为:

image.png image.png

a的另一种表示形式:

image.png

向量化过程

向量化主要是针对a的式子来进行改进,将:分子看做w^{(i)},v^{(i)},分母看做w^{(i)},w^{(i)}

image.png image.png
import numpy as np

class SimpleLinearRegression1(object):
    def __init__(self):
        # ab不是用户送进来的参数,相当于是私有的属性
        self.a_ = None
        self.b_ = None
    
    def fit(self, x_train,y_train):
        # fit函数:根据训练数据集来得到模型
        assert x_train.ndim == 1, \
            "simple linear regression can only solve single feature training data"
        assert len(x_train) == len(y_train), \
            "the size of x_train must be equal to the size of y_train"

        x_mean = np.mean(x_train)
        y_mean = np.mean(y_train)

        num = 0.0
        d = 0.0
        for x, y in zip(x_train, y_train):
            num += (x - x_mean) * (y - y_mean)
            d += (x - x_mean) ** 2
        
        self.a_ = num / d
        self.b_ = y_mean - self.a_ * x_mean
        
        # 返回自身,sklearn对fit函数的规范
        return self
    
    def predict(self, x_predict):
        # 传进来的是待预测的x 
        assert x_predict.ndim == 1, \
            "simple linear regression can only solve single feature training data"
        assert self.a_ is not None and self.b_ is not None, \
            "must fit before predict!"
            
        return np.array([self._predict(x) for x in x_predict])
    
    def _predict(self, x_single):
        # 对一个数据进行预测 
        return self.a_ * x_single + self.b_
    
    def __repr__(self):
        # 字符串输出
        return "SimpleLinearRegression1()"
    
  
 # 通过向量化实现
class SimpleLinearRegression2(object):
    def __init__(self):
        # a, b不是用户送进来的参数,相当于是私有的属性
        self.a_ = None
        self.b_ = None
    
    def fit(self, x_train, y_train):
        # fit函数:根据训练数据集来得到模型
        assert x_train.ndim == 1, \
            "simple linear regression can only solve single feature training data"
        assert len(x_train) == len(y_train), \
            "the size of x_train must be equal to the size of y_train"

        x_mean = np.mean(x_train)
        y_mean = np.mean(y_train)
        
        #  改成向量形式代替for循环,numpy中的.dot形式
        #  参考上面的向量化公式 
        num = (x_train - x_mean).dot(y_train - y_mean)
        d = (x_train - x_mean).dot(x_train - x_mean)
        
        self.a_ = num / d
        self.b_ = y_mean - self.a_ * x_mean
        
        # 返回自身,sklearn对fit函数的规范
        return self
    
    def predict(self, x_predict):
        # 传进来的是待预测的x 
        assert x_predict.ndim == 1, \
            "simple linear regression can only solve single feature training data"
        assert self.a_ is not None and self.b_ is not None, \
            "must fit before predict!"
            
        return np.array([self._predict(x) for x in x_predict])
    
    def _predict(self, x_single):
        # 对一个数据进行预测 
        return self.a_ * x_single + self.b_
    
    def __repr__(self):
        # 字符串函数,输出方便进行查看
        return "SimpleLinearRegression2()"

衡量标准

衡量标准:将数据分成训练数据集train和测试数据集test,通过训练数据集得到a和b,再通过测试数据集进行衡量

image.png

sklearn中没有RMSE,只有MAE、MSE

import numpy as np
from math import sqrt


def accuracy_score(y_true, y_predict):
    '''准确率的封装:计算y_true和y_predict之间的准确率'''
    assert y_true.shape[0] == y_predict.shape[0], \
    "the size of y_true must be equal to the size of y_predict"

    return sum(y_true ==y_predict) / len(y_true)


def mean_squared_error(y_true, y_predict):
    # 计算y_true 和 y_predict之间的MSE
    assert len(y_true) == len(y_predict), \
        "the size of y_true must be equal to the size of y_predict"
    return np.sum((y_true - y_predict)**2) / len(y_true)


def root_mean_squared_error(y_true, y_predict):
    # 计算y_true 和 y_predict之间的RMSE
    return sqrt(mean_squared_error(y_true, y_predict))


def mean_absolute_error(y_true, y_predict):
    # 计算y_true 和 y_predict之间的MAE
    assert len(y_true) == len(y_predict), \
        "the size of y_true must be equal to the size of y_predict"
    
    return np.sum(np.absolute(y_true - y_predict)) / len(y_true)
image.png

R^2指标

R^2指标的定义为### R^2指标
R^2指标的定义为R^2=1- \frac {SS_{residual}}{SS_{total}}
R^2=1-\frac {\sum_i{(\hat y^{(i)}-y^{(i)}})^2}{\sum_i{(\bar y-y^{(i)}})^2}

image.png image.png

分子为模型预测产生的误差;分母为使用均值产生的误差(baseline model产生的误差)

式子表示为:预测模型没有产生误差的指标

image.png

多元线性回归

将特征数从1拓展到了N,求解思路和一元线性回归类似。


image.png

目标函数


image.png image.png image.png
image.png
image.png image.png
上一篇 下一篇

猜你喜欢

热点阅读