操作系统

《深入Linux内核架构》读书笔记-进程管理和调度

2019-02-10  本文已影响0人  vincent_0425

2.1 进程优先级

1. 进程分类

1)硬实时进程: 有严格时间限制
2)软实时进程,
3)普通进程:大多数进程

2.2 进程生命周期

进程的生命周期可归结为以下三个状态:

  1. 运行:进程正在执行;
  2. 睡眠:进程正在睡眠,不能执行,它在等待一个外部事件;
  3. 等待:进程可以运行,但是需要等到下一任务切换时执行。
    更细致的,从task_struct中state中得到具体状态:
    1)运行时状态:
    TASK_RUNNING:进程处于可运行状态,但并不意味着已实际分配了CPU,而是进程可以无需等待外部条件执行;
    TASK_INTERRUPTIBLE:进程处于睡眠状态,可由外部信号唤醒;
    TASK_UNINTERRUPTIBLE:睡眠状态,但不能有外部信号唤醒,例如IO等待,这种状态主要是为了保持强一致性,例如读取磁盘时若外部信号能中断,那么磁盘读取则会处理不完整状态,影响正常使用。
    __TASK_STOPPED:进程特意停止运行,如由调试器暂停;
    __TASK_TRACED:ptrace跟踪用,在调试时区分常规进程;
    2)退出时状态:exit_state
    EXIT_ZOMBIE: 进程处于僵尸状态。当进程被另一个进程或用户杀死的同时,父进程在该子进程终止时,未调用wait函数,则会出现僵尸进程。
    EXIT_DEAD:指父进程已发出wait调用,但进程还未完全从系统中移除之前的状态

2.3 进程表示

进程的表示主要通过task_struct结构:

struct task_struct {
    volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
    void *stack;
    atomic_t usage;
    unsigned int flags; /* per process flags, defined below */
    unsigned int ptrace;

    int lock_depth;     /* BKL lock depth */

#ifdef CONFIG_SMP
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
    int oncpu;
#endif
#endif

    int prio, static_prio, normal_prio;
    unsigned int rt_priority;
    const struct sched_class *sched_class;
    struct sched_entity se;
    struct sched_rt_entity rt;

#ifdef CONFIG_PREEMPT_NOTIFIERS
    /* list of struct preempt_notifier: */
    struct hlist_head preempt_notifiers;
#endif

    /*
     * fpu_counter contains the number of consecutive context switches
     * that the FPU is used. If this is over a threshold, the lazy fpu
     * saving becomes unlazy to save the trap. This is an unsigned char
     * so that after 256 times the counter wraps and the behavior turns
     * lazy again; this to deal with bursty apps that only use FPU for
     * a short time
     */
    unsigned char fpu_counter;
#ifdef CONFIG_BLK_DEV_IO_TRACE
    unsigned int btrace_seq;
#endif

    unsigned int policy;
    cpumask_t cpus_allowed;

#ifdef CONFIG_PREEMPT_RCU
    int rcu_read_lock_nesting;
    char rcu_read_unlock_special;
    struct list_head rcu_node_entry;
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TREE_PREEMPT_RCU
    struct rcu_node *rcu_blocked_node;
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
#ifdef CONFIG_RCU_BOOST
    struct rt_mutex *rcu_boost_mutex;
#endif /* #ifdef CONFIG_RCU_BOOST */

#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
    struct sched_info sched_info;
#endif

    struct list_head tasks;
#ifdef CONFIG_SMP
    struct plist_node pushable_tasks;
#endif

    struct mm_struct *mm, *active_mm;
#ifdef CONFIG_COMPAT_BRK
    unsigned brk_randomized:1;
#endif
#if defined(SPLIT_RSS_COUNTING)
    struct task_rss_stat    rss_stat;
#endif
/* task state */
    int exit_state;
    int exit_code, exit_signal;
    int pdeath_signal;  /*  The signal sent when the parent dies  */
    /* ??? */
    unsigned int personality;
    unsigned did_exec:1;
    unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
                 * execve */
    unsigned in_iowait:1;


    /* Revert to default priority/policy when forking */
    unsigned sched_reset_on_fork:1;

    pid_t pid;
    pid_t tgid;

#ifdef CONFIG_CC_STACKPROTECTOR
    /* Canary value for the -fstack-protector gcc feature */
    unsigned long stack_canary;
#endif

    /* 
     * pointers to (original) parent process, youngest child, younger sibling,
     * older sibling, respectively.  (p->father can be replaced with 
     * p->real_parent->pid)
     */
    struct task_struct *real_parent; /* real parent process */
    struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
    /*
     * children/sibling forms the list of my natural children
     */
    struct list_head children;  /* list of my children */
    struct list_head sibling;   /* linkage in my parent's children list */
    struct task_struct *group_leader;   /* threadgroup leader */

    /*
     * ptraced is the list of tasks this task is using ptrace on.
     * This includes both natural children and PTRACE_ATTACH targets.
     * p->ptrace_entry is p's link on the p->parent->ptraced list.
     */
    struct list_head ptraced;
    struct list_head ptrace_entry;

    /* PID/PID hash table linkage. */
    struct pid_link pids[PIDTYPE_MAX];
    struct list_head thread_group;

    struct completion *vfork_done;      /* for vfork() */
    int __user *set_child_tid;      /* CLONE_CHILD_SETTID */
    int __user *clear_child_tid;        /* CLONE_CHILD_CLEARTID */

    cputime_t utime, stime, utimescaled, stimescaled;
    cputime_t gtime;
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
    cputime_t prev_utime, prev_stime;
#endif
    unsigned long nvcsw, nivcsw; /* context switch counts */
    struct timespec start_time;         /* monotonic time */
    struct timespec real_start_time;    /* boot based time */
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
    unsigned long min_flt, maj_flt;

    struct task_cputime cputime_expires;
    struct list_head cpu_timers[3];

/* process credentials */
    const struct cred __rcu *real_cred; /* objective and real subjective task
                     * credentials (COW) */
    const struct cred __rcu *cred;  /* effective (overridable) subjective task
                     * credentials (COW) */
    struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */

    char comm[TASK_COMM_LEN]; /* executable name excluding path
                     - access with [gs]et_task_comm (which lock
                       it with task_lock())
                     - initialized normally by setup_new_exec */
/* file system info */
    int link_count, total_link_count;
#ifdef CONFIG_SYSVIPC
/* ipc stuff */
    struct sysv_sem sysvsem;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
/* hung task detection */
    unsigned long last_switch_count;
#endif
/* CPU-specific state of this task */
    struct thread_struct thread;
/* filesystem information */
    struct fs_struct *fs;
/* open file information */
    struct files_struct *files;
/* namespaces */
    struct nsproxy *nsproxy;
/* signal handlers */
    struct signal_struct *signal;
    struct sighand_struct *sighand;

    sigset_t blocked, real_blocked;
    sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
    struct sigpending pending;

    unsigned long sas_ss_sp;
    size_t sas_ss_size;
    int (*notifier)(void *priv);
    void *notifier_data;
    sigset_t *notifier_mask;
    struct audit_context *audit_context;
#ifdef CONFIG_AUDITSYSCALL
    uid_t loginuid;
    unsigned int sessionid;
#endif
    seccomp_t seccomp;

/* Thread group tracking */
    u32 parent_exec_id;
    u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
 * mempolicy */
    spinlock_t alloc_lock;

#ifdef CONFIG_GENERIC_HARDIRQS
    /* IRQ handler threads */
    struct irqaction *irqaction;
#endif

    /* Protection of the PI data structures: */
    raw_spinlock_t pi_lock;

#ifdef CONFIG_RT_MUTEXES
    /* PI waiters blocked on a rt_mutex held by this task */
    struct plist_head pi_waiters;
    /* Deadlock detection and priority inheritance handling */
    struct rt_mutex_waiter *pi_blocked_on;
#endif

#ifdef CONFIG_DEBUG_MUTEXES
    /* mutex deadlock detection */
    struct mutex_waiter *blocked_on;
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
    unsigned int irq_events;
    unsigned long hardirq_enable_ip;
    unsigned long hardirq_disable_ip;
    unsigned int hardirq_enable_event;
    unsigned int hardirq_disable_event;
    int hardirqs_enabled;
    int hardirq_context;
    unsigned long softirq_disable_ip;
    unsigned long softirq_enable_ip;
    unsigned int softirq_disable_event;
    unsigned int softirq_enable_event;
    int softirqs_enabled;
    int softirq_context;
#endif
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL
    u64 curr_chain_key;
    int lockdep_depth;
    unsigned int lockdep_recursion;
    struct held_lock held_locks[MAX_LOCK_DEPTH];
    gfp_t lockdep_reclaim_gfp;
#endif

/* journalling filesystem info */
    void *journal_info;

/* stacked block device info */
    struct bio_list *bio_list;

#ifdef CONFIG_BLOCK
/* stack plugging */
    struct blk_plug *plug;
#endif

/* VM state */
    struct reclaim_state *reclaim_state;

    struct backing_dev_info *backing_dev_info;

    struct io_context *io_context;

    unsigned long ptrace_message;
    siginfo_t *last_siginfo; /* For ptrace use.  */
    struct task_io_accounting ioac;
#if defined(CONFIG_TASK_XACCT)
    u64 acct_rss_mem1;  /* accumulated rss usage */
    u64 acct_vm_mem1;   /* accumulated virtual memory usage */
    cputime_t acct_timexpd; /* stime + utime since last update */
#endif
#ifdef CONFIG_CPUSETS
    nodemask_t mems_allowed;    /* Protected by alloc_lock */
    int mems_allowed_change_disable;
    int cpuset_mem_spread_rotor;
    int cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
    /* Control Group info protected by css_set_lock */
    struct css_set __rcu *cgroups;
    /* cg_list protected by css_set_lock and tsk->alloc_lock */
    struct list_head cg_list;
#endif
#ifdef CONFIG_FUTEX
    struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT
    struct compat_robust_list_head __user *compat_robust_list;
#endif
    struct list_head pi_state_list;
    struct futex_pi_state *pi_state_cache;
#endif
#ifdef CONFIG_PERF_EVENTS
    struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
    struct mutex perf_event_mutex;
    struct list_head perf_event_list;
#endif
#ifdef CONFIG_NUMA
    struct mempolicy *mempolicy;    /* Protected by alloc_lock */
    short il_next;
    short pref_node_fork;
#endif
    atomic_t fs_excl;   /* holding fs exclusive resources */
    struct rcu_head rcu;

    /*
     * cache last used pipe for splice
     */
    struct pipe_inode_info *splice_pipe;
#ifdef  CONFIG_TASK_DELAY_ACCT
    struct task_delay_info *delays;
#endif
#ifdef CONFIG_FAULT_INJECTION
    int make_it_fail;
#endif
    struct prop_local_single dirties;
#ifdef CONFIG_LATENCYTOP
    int latency_record_count;
    struct latency_record latency_record[LT_SAVECOUNT];
#endif
    /*
     * time slack values; these are used to round up poll() and
     * select() etc timeout values. These are in nanoseconds.
     */
    unsigned long timer_slack_ns;
    unsigned long default_timer_slack_ns;

    struct list_head    *scm_work_list;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
    /* Index of current stored address in ret_stack */
    int curr_ret_stack;
    /* Stack of return addresses for return function tracing */
    struct ftrace_ret_stack *ret_stack;
    /* time stamp for last schedule */
    unsigned long long ftrace_timestamp;
    /*
     * Number of functions that haven't been traced
     * because of depth overrun.
     */
    atomic_t trace_overrun;
    /* Pause for the tracing */
    atomic_t tracing_graph_pause;
#endif
#ifdef CONFIG_TRACING
    /* state flags for use by tracers */
    unsigned long trace;
    /* bitmask of trace recursion */
    unsigned long trace_recursion;
#endif /* CONFIG_TRACING */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
    struct memcg_batch_info {
        int do_batch;   /* incremented when batch uncharge started */
        struct mem_cgroup *memcg; /* target memcg of uncharge */
        unsigned long nr_pages; /* uncharged usage */
        unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
    } memcg_batch;
#endif
#ifdef CONFIG_HAVE_HW_BREAKPOINT
    atomic_t ptrace_bp_refcnt;
#endif
};

进程管理中需要注意的一些重要成员:
1、state: 见上文;
2、资源管理rlim数组,见signal_struct中:

struct rlimit rlim[RLIM_NLIMITS];

rlimit定义如下:

struct rlmit {
  unsigned long rlim_cur;  // 进程当前的资源限制,叫软限制
  unsigned long rlim_max; // 进程最大容许值,叫硬限制 
}

rlim数组的索引标识类型,资源限制可通过查看limits文件得知:

cat /proc/pid/limits

2.3.1 进程类型

1、新进程是通过fork、exec系统调用产生的;
2、clone也可以产生新进程,但是clone主要用于实现线程,它和fork的主要不同点在于父子进程共享的资源不同,本质上是没有任务区别的。

2.3.2 命名空间

作用

不同于KVM或VMWare,Linux的命名空间只使用一个内核在一台物理计算机上运作,只需要很少的资源,便可虚拟化出多台计算机。namespace主要做资源的隔离,正如目前很热门的Docker技术也是使用类似的原理。

创建方式

创建方式有三种:
1、clone() – 实现线程的系统调用,用来创建一个新的进程,并可以通过设计参数达到各类资源的隔离。
2、unshare() – 使某进程脱离某个namespace
3、setns() – 把某进程加入到某个namespace

实现方式

namespace的实现主要由nsproxy结构:

struct nsproxy {
    atomic_t count;  // 引用计数,
    struct uts_namespace *uts_ns; // UTS命名空间,包括内核名称版本等信息
    struct ipc_namespace *ipc_ns; // 进程间通信相关信息
    struct mnt_namespace *mnt_ns;  // 文件系统挂载信息
        struct user_namespace *user_ns; // 用于保存限制每个用户资源使用的信息
    struct pid_namespace *pid_ns;  // 进程ID相关信息
    struct net       *net_ns;  // 网络相关命名空间信息
};

具体可参考:DOCKER基础技术:LINUX NAMESPACE(上)

2.3.2 进程ID号

pid.png

上图很好的阐述了进程ID的结构信息
首先从task_struct开始:

struct task_struct {
  ...
  struct pid_link pids[PIDTYPE_MAX];
  ...
}

其中pids数组是一个将task_struct关联到pid的散列表。

struct pid_link {
    struct hlist_node node;  用作散列表元素
    struct pid *pid;
}
struct upid {
    /* Try to keep pid_chain in the same cacheline as nr for find_vpid */
    int nr;  // ID数值
    struct pid_namespace *ns;  // 关联到pid_namespace的指针
    struct hlist_node pid_chain;
};

struct pid
{
    atomic_t count;   // 引用计数
    unsigned int level;  // 层级,子命名空间的level为父命名空间level+1
    /* lists of tasks that use this pid */
    struct hlist_head tasks[PIDTYPE_MAX];  // 一个HASH数组,每一项都是一个链表头。分别是PID链表头,进程组ID表头,会话ID表头;
    struct rcu_head rcu;
    struct upid numbers[1]; // 是一个UPID数组,记录对应层级的命名空间中的UPID,所以可以想到,该PID处于第几层,那么这个数组应该有几项(当然都是从0开始)。
};
enum pid_type
{
    PIDTYPE_PID,   // 进程PID
    PIDTYPE_PGID,  // 进程组PID
    PIDTYPE_SID,   // 会话PID
    PIDTYPE_MAX
};

这里没加上TGID的原因是线程组也是一种PID:线程组长PID,再单独定义一个id没有必要。
upid中关联到pid_namespace,再看看pid_namespace定义:

struct pid_namespace {
    struct kref kref;  
    struct pidmap pidmap[PIDMAP_ENTRIES];
    int last_pid;
    struct task_struct *child_reaper;
    struct kmem_cache *pid_cachep;
    unsigned int level;
    struct pid_namespace *parent;
#ifdef CONFIG_PROC_FS
    struct vfsmount *proc_mnt;
#endif
#ifdef CONFIG_BSD_PROCESS_ACCT
    struct bsd_acct_struct *bacct;
#endif
};

在这里只关注child_reaper指针、level和parent指针。
其中child_reaper作用类似于fork函数中父进程调用wait系列函数,用于托管进程:就是当父进程先于子进程结束的时候,就把子进程的父进程更新为child_reaper。
level即为命名空间的层级关系;
parent:父pid命名空间指针。
参考文章:Pid NameSpace浅分析

生成唯一PID

唯一pid的生成其实是通过一个大的bitmap生成,bitmap有高效、节省空间的作用,本质即是寻找bitmap中第一个为0的比特用于分配新pid。该bitmap可见pid_namespace:

struct pid_namespace {
    ...
    struct pidmap pidmap[PIDMAP_ENTRIES];
    ...
}

#define PIDMAP_ENTRIES         ((PID_MAX_LIMIT + 8*PAGE_SIZE - 1)/PAGE_SIZE/8);
#define PID_MAX_LIMIT (CONFIG_BASE_SMALL ? PAGE_SIZE * 8 : \
    (sizeof(long) > 4 ? 4 * 1024 * 1024 : PID_MAX_DEFAULT));

alloc_pidmap函数用于分配一个PID,而free_pidmap用于地方一个PID,具体见kernel/pid.c

上一篇 下一篇

猜你喜欢

热点阅读