Hadoop-MapReduce的工作原理

2019-05-30  本文已影响0人  奔跑地蜗牛

简介

MapReduce是工作于Hadoop之上的计算模型,可以将一个大型计算任务拆分为多个小的,可以在服务集群运行和计算的小任务,并将各个小任务计算结果汇总为一个计算结果;其过程主要分为Map阶段和Reduce阶段,MapReduce有1.0版本和2.0版本;
MapReduceV1主要概念:

MapReduceV2主要概念:

其新老版本架构图如下:


MRV1&MRV2.jpg

工作原理

MRV1工作流程

MapReduceV1版本执行流程图如下:


MapReduceV1执行过程.png
  1. jobClient运行一个Job;
  2. 向JobTracker申请一个Job Id;
  3. JobClient向HDFS上以JobId为名的文件夹上复制运行作业需要的资源文件,该资源文件包括MapReduce程序打包的.jar程序文件,配置文件以及客户端计算所得的计算输入划分;jar程序一般会有10个备份,同时输入划分信息会告诉JobTracker为其创建多少个Map任务;
  4. JobTracker接收一个job作业后,会将其放入一个作业队列,等待作业调度器进行调度;当调度器调度该作业时会获取作业的资源文件,然后根据输入划分信息为每个划分创建一个Map任务,交个一个TaskTracker进行执行,同时TaskTracker会复制jar文件进行运行;对于Map任务和Reduce任务,TaskTracker会根据主机核数量和内存大小分成固定数量的map槽和reduce槽,同时分配的TaskTracker必须包含该Map任务所需要处理的数据块,这叫数据本地化,而Reduce任务无需考虑数据本地化;
    5.TaskTracker运行jar程序后,会每个一段时间向JobTracker发送一个心跳,同时告诉JobTracker任务完成情况;当JobTracker收到最后一个JobTracker发送来的作业完成时,它会将该作业设置为成功,同时展示给用户;

Yarn执行流程

Yarn执行job流程如下图:


Yarn执行流程.png

其主要流程有以下几个步骤组成:

  1. 作业提交

    • 第一步: 客户端通过调用job.waitForCompletion()方法向整个集群提交MapReduces任务;
    • 第二步: 客户端通过getNewApplication方法向ResouceManager申请新应用,成功的话,ResourceManager会返回一个ApplicationId;
    • 第三步:客户端根据ApplicationId在HDFS上创建一个文件夹用于复制作业需要的资源文件,包括jar程序包,配置文件,以及输入split;
    • 第四步:客户端通过submitApplications方法向ResourceManager提交作业;
  2. 作业初始化:

    • 第五步:ResourceManager在收到submitApplications请求后,会将该请求发送给scheduler(调度器),调度器会分配一个container,用来运行MRAppMaster应用程序,该应用管理器由所在的nodeManager负责监控;
    • 第六步: MRAppMaster会对作业进行初始化,创建一些bookkeeping对象来监控作业的进度,获得任务进度和完成报告
    • 第七步:MRAppMaster会从HDFS上获取输入split,然后为每个split分配创建一个map任务;
  3. 资源分配

    • 第八步: MRAppMaster会根据Map和Reduce任务向ResorceManager申请container资源来运行这些任务;这些请求是通过心跳传输的,请求信息中包含Map和Reduce运行的数据块位置信息(如host和rack),资源调度器收到请求后,会尽量将Map/Reduce任务分配到存储数据块的节点或者分配到存有输入split节点的机架上的其他节点;
  4. 任务执行

    • 第九步:MRAppMaster会在资源调度器分配container后,联系对应的NodeManager启动container,运行一个YarnChlid的java应用程序;
    • 第十步:YarnChild应用程序会从HDFS上获取jar文件,作业配置以及相应的资源文件;
    • 第十一步: YarnChild通过.jar程序运行对应的Map或者Reduce任务;
  5. 任务执行情况上报:Yarn将任务的执行情况和状态(包括container)上报给MRAppMaster,客户端定时刷新任务状态;

  6. 作业完成:作业完成后,会将作业状态进行清理包括MRAppMaster和Container,以及OutputCommiter上的作业清理方法也将会被调用,最后作业的历史信息将会被存储以备查询;

上一篇下一篇

猜你喜欢

热点阅读