TensorBoard的学习0-2

2016-11-20  本文已影响927人  Faded憔悴不堪

TensorBoard

TensorBoard的官网教程如下:

https://www.tensorflow.org/versions/r0.7/how_tos/summaries_and_tensorboard/index.html

简单解释下:TensorBoard是个可视化工具,可以用来查看TensorFlow的图以及过程中的各种值和图像等。

1. 在tensorflow程序中给需要的节点添加“summary operations”,“summary operations”会收集该节点的数据,并标记上第几步、时间戳等标识,写入事件文件。

事件文件的形式如下所示:

2. TensorBoard读取事件文件,并可视化Tensorflow的流程。

Demo演示

利用官网提供的例子进行演示,官方例子提供了一个基于mnist的例子,我的文件的路径如下:

~/libsource/tensorflow/tensorflow/examples/tutorials/mnist,

其中~/libsource/tensorflow/改为用户自己的tensorflow路径即可。

上述目录下有一个mnist_with_summaries.py文件,即为加入了“summary operations”的mnist demo。

启动mnist_with_summaries.py,

python mnist_with_summaries.py

mnist_with_summaries.py的源码如下:

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the 'License');# you may not use this file except in compliance with the License.# You may obtain a copy of the License at##    http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an 'AS IS' BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.# =============================================================================="""A simple MNIST classifier which displays summaries in TensorBoard.

This is an unimpressive MNIST model, but it is a good example of using

tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of

naming summary tags so that they are grouped meaningfully in TensorBoard.

It demonstrates the functionality of every TensorBoard dashboard.

"""from__future__importabsolute_importfrom__future__importdivisionfrom__future__importprint_functionimporttensorflowastffromtensorflow.examples.tutorials.mnistimportinput_dataflags = tf.app.flagsFLAGS = flags.FLAGSflags.DEFINE_boolean('fake_data',False,'If true, uses fake data ''for unit testing.')flags.DEFINE_integer('max_steps',1000,'Number of steps to run trainer.')flags.DEFINE_float('learning_rate',0.001,'Initial learning rate.')flags.DEFINE_float('dropout',0.9,'Keep probability for training dropout.')flags.DEFINE_string('data_dir','/tmp/data','Directory for storing data')flags.DEFINE_string('summaries_dir','/tmp/mnist_logs','Summaries directory')deftrain():# Import datamnist = input_data.read_data_sets(FLAGS.data_dir,                                    one_hot=True,                                    fake_data=FLAGS.fake_data)  sess = tf.InteractiveSession()# Create a multilayer model.# Input placehoolderswithtf.name_scope('input'):    x = tf.placeholder(tf.float32, [None,784], name='x-input')    y_ = tf.placeholder(tf.float32, [None,10], name='y-input')withtf.name_scope('input_reshape'):    image_shaped_input = tf.reshape(x, [-1,28,28,1])    tf.image_summary('input', image_shaped_input,10)# We can't initialize these variables to 0 - the network will get stuck.defweight_variable(shape):"""Create a weight variable with appropriate initialization."""initial = tf.truncated_normal(shape, stddev=0.1)returntf.Variable(initial)defbias_variable(shape):"""Create a bias variable with appropriate initialization."""initial = tf.constant(0.1, shape=shape)returntf.Variable(initial)defvariable_summaries(var, name):"""Attach a lot of summaries to a Tensor."""withtf.name_scope('summaries'):      mean = tf.reduce_mean(var)      tf.scalar_summary('mean/'+ name, mean)withtf.name_scope('stddev'):        stddev = tf.sqrt(tf.reduce_sum(tf.square(var - mean)))      tf.scalar_summary('sttdev/'+ name, stddev)      tf.scalar_summary('max/'+ name, tf.reduce_max(var))      tf.scalar_summary('min/'+ name, tf.reduce_min(var))      tf.histogram_summary(name, var)defnn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):"""Reusable code for making a simple neural net layer.

It does a matrix multiply, bias add, and then uses relu to nonlinearize.

It also sets up name scoping so that the resultant graph is easy to read,

and adds a number of summary ops.

"""# Adding a name scope ensures logical grouping of the layers in the graph.withtf.name_scope(layer_name):# This Variable will hold the state of the weights for the layerwithtf.name_scope('weights'):        weights = weight_variable([input_dim, output_dim])        variable_summaries(weights, layer_name +'/weights')withtf.name_scope('biases'):        biases = bias_variable([output_dim])        variable_summaries(biases, layer_name +'/biases')withtf.name_scope('Wx_plus_b'):        preactivate = tf.matmul(input_tensor, weights) + biases        tf.histogram_summary(layer_name +'/pre_activations', preactivate)      activations = act(preactivate,'activation')      tf.histogram_summary(layer_name +'/activations', activations)returnactivations  hidden1 = nn_layer(x,784,500,'layer1')withtf.name_scope('dropout'):    keep_prob = tf.placeholder(tf.float32)    tf.scalar_summary('dropout_keep_probability', keep_prob)    dropped = tf.nn.dropout(hidden1, keep_prob)  y = nn_layer(dropped,500,10,'layer2', act=tf.nn.softmax)withtf.name_scope('cross_entropy'):    diff = y_ * tf.log(y)withtf.name_scope('total'):      cross_entropy = -tf.reduce_mean(diff)    tf.scalar_summary('cross entropy', cross_entropy)withtf.name_scope('train'):    train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(        cross_entropy)withtf.name_scope('accuracy'):withtf.name_scope('correct_prediction'):      correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))withtf.name_scope('accuracy'):      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))    tf.scalar_summary('accuracy', accuracy)# Merge all the summaries and write them out to /tmp/mnist_logs (by default)merged = tf.merge_all_summaries()  train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir +'/train',                                        sess.graph)  test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir +'/test')  tf.initialize_all_variables().run()# Train the model, and also write summaries.# Every 10th step, measure test-set accuracy, and write test summaries# All other steps, run train_step on training data, & add training summariesdeffeed_dict(train):"""Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""iftrainorFLAGS.fake_data:      xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)      k = FLAGS.dropoutelse:      xs, ys = mnist.test.images, mnist.test.labels      k =1.0return{x: xs, y_: ys, keep_prob: k}foriinrange(FLAGS.max_steps):ifi %10==0:# Record summaries and test-set accuracysummary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))      test_writer.add_summary(summary, i)      print('Accuracy at step %s: %s'% (i, acc))else:# Record train set summaries, and trainifi %100==99:# Record execution statsrun_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)        run_metadata = tf.RunMetadata()        summary, _ = sess.run([merged, train_step],                              feed_dict=feed_dict(True),                              options=run_options,                              run_metadata=run_metadata)        train_writer.add_run_metadata(run_metadata,'step%d'% i)        train_writer.add_summary(summary, i)        print('Adding run metadata for', i)else:# Record a summarysummary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))        train_writer.add_summary(summary, i)defmain(_):iftf.gfile.Exists(FLAGS.summaries_dir):    tf.gfile.DeleteRecursively(FLAGS.summaries_dir)  tf.gfile.MakeDirs(FLAGS.summaries_dir)  train()if__name__ =='__main__':  tf.app.run()

其中

flags.DEFINE_string('summaries_dir','/tmp/mnist_logs','Summaries directory')

标识了事件文件的输出路径。该例中,输出路径为/tmp/mnist_logs

打开TensorBoard服务

tensorboard --logdir=/tmp/mnist_logs/

在浏览器中进行浏览http://0.0.0.0:6006,在这个可视化界面中,可以查看tensorflow图和各种中间输出等。

TensorBoard的不过是个调试工具,看起来很酷炫有没有,但怎么充分利用,我想还是要对tensorflow充分了解。下面要转向对tensorflow的学习中了。

Error 2 Bug解决

通过pip方式安装的tensorflow,在使用tensorboard的时候,可能会出现如下Bug:

WARNING:tensorflow:IOError [Errno2] No suchfileordirectory:'/usr/local/lib/python2.7/dist-packages/tensorflow/tensorboard/TAG'onpath/usr/local/lib/python2.7/dist-packages/tensorflow/tensorboard/TAGWARNING:tensorflow:UnabletoreadTensorBoard tagStarting TensorBoardonport6006

解决方案:

下载tensorflow的github的源代码,将tensorflow的tensorboard目录下的TAG文件拷贝到Python下面的tensorboard目录下即可,我的目录如下:

sudo cp ~/libsource/tensorflow/tensorflow/tensorflow/tensorboard/TAG/usr/local/lib/python2.7/dist-packages/tensorflow/tensorboard/

上一篇下一篇

猜你喜欢

热点阅读