Yeo-Johnson变换
2020-10-19 本文已影响0人
山有木兮木有刺
1 为什么要进行Yeo-Johnson变换
To better meet the assumptions of normality and homogenous variances
Yeo-Johnson transformation provides a powerful way of reducing skewness and can be applied to variables that include negative values【1】
参考文献:【1】Global effects of soil and climate on leaf photosynthetic traits and rates
备注:
help(preprocessing.scale)
scale(X, axis=0, with_mean=True, with_std=True, copy=True)
axis=0:默认是按照每一个特征(即按照列)进行标准化;
axis=1:则为行,按照样本进本进行标准化
代码:
import numpyas np
from sklearn.preprocessingimport PowerTransformer
pt =PowerTransformer(method='yeo-johnson', standardize=True, copy=True)
data = [[1, 2], [3, 2], [4, 5]]
print(pt.fit(data))
PowerTransformer()
print(pt.lambdas_)
print(pt.transform(data))