ceres求解ICP--SLAM 十四讲第七章课后题
2018-08-10 本文已影响0人
远行_2a22
by jie 2018.8.10
参考:如何用ceres进行两帧之间的BA优化
思路分析
之前用ceres求解了pnp问题,3d-2d构建cost fuction是最小重投影。那3d-3d呢?
也可以用最小重投影.思路是,将第一帧图像坐标系下的3d点经过旋转平移到第二帧图像下,然后通过相机内参求得其投影到图像坐标系下的坐标。第二帧观测到的与之匹配的3d点,也可以进行重投影得到图像坐标系下的坐标。两者就残差即可。
先来完整代码:
#include <iostream>
#include <opencv2/core/core.hpp>
#include <ceres/ceres.h>
#include <chrono>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/SVD>
#include "common/rotation.h"
using namespace std;
using namespace cv;
void find_feature_matches (
const Mat& img_1, const Mat& img_2,
std::vector<KeyPoint>& keypoints_1,
std::vector<KeyPoint>& keypoints_2,
std::vector< DMatch >& matches );
// 像素坐标转相机归一化坐标
Point2d pixel2cam ( const Point2d& p, const Mat& K );
void find_feature_matches (
const Mat& img_1, const Mat& img_2,
std::vector<KeyPoint>& keypoints_1,
std::vector<KeyPoint>& keypoints_2,
std::vector< DMatch >& matches );
// 像素坐标转相机归一化坐标
Point2d pixel2cam ( const Point2d& p, const Mat& K );
void pose_estimation_3d3d (
const vector<Point3f>& pts1,
const vector<Point3f>& pts2,
Mat& R, Mat& t
);
struct cost_function_define
{
cost_function_define(Point3f p1,Point3f p2):_p1(p1),_p2(p2){}
template<typename T>
bool operator()(const T* const cere_r,const T* const cere_t,T* residual)const
{
T p_1[3];
T p_2[3];
p_1[0]=T(_p1.x);
p_1[1]=T(_p1.y);
p_1[2]=T(_p1.z);
AngleAxisRotatePoint(cere_r,p_1,p_2);
p_2[0]=p_2[0]+cere_t[0];
p_2[1]=p_2[1]+cere_t[1];
p_2[2]=p_2[2]+cere_t[2];
const T x=p_2[0]/p_2[2];
const T y=p_2[1]/p_2[2];
const T u=x*520.9+325.1;
const T v=y*521.0+249.7;
T p_3[3];
p_3[0]=T(_p2.x);
p_3[1]=T(_p2.y);
p_3[2]=T(_p2.z);
const T x1=p_3[0]/p_3[2];
const T y1=p_3[1]/p_3[2];
const T u1=x1*520.9+325.1;
const T v1=y1*521.0+249.7;
residual[0]=u-u1;
residual[1]=v-v1;
return true;
}
Point3f _p1,_p2;
};
int main ( int argc, char** argv )
{
if ( argc != 5 )
{
cout<<"usage: pose_estimation_3d3d img1 img2 depth1 depth2"<<endl;
return 1;
}
//-- 读取图像
Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );
Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );
vector<KeyPoint> keypoints_1, keypoints_2;
vector<DMatch> matches;
find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );
cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;
// 建立3D点
Mat depth1 = imread ( argv[3], CV_LOAD_IMAGE_UNCHANGED ); // 深度图为16位无符号数,单通道图像
Mat depth2 = imread ( argv[4], CV_LOAD_IMAGE_UNCHANGED ); // 深度图为16位无符号数,单通道图像
Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
vector<Point3f> pts1, pts2;
for ( DMatch m:matches )
{
ushort d1 = depth1.ptr<unsigned short> ( int ( keypoints_1[m.queryIdx].pt.y ) ) [ int ( keypoints_1[m.queryIdx].pt.x ) ];
ushort d2 = depth2.ptr<unsigned short> ( int ( keypoints_2[m.trainIdx].pt.y ) ) [ int ( keypoints_2[m.trainIdx].pt.x ) ];
if ( d1==0 || d2==0 ) // bad depth
continue;
Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K );
Point2d p2 = pixel2cam ( keypoints_2[m.trainIdx].pt, K );
float dd1 = float ( d1 ) /1000.0;
float dd2 = float ( d2 ) /1000.0;
pts1.push_back ( Point3f ( p1.x*dd1, p1.y*dd1, dd1 ) );
pts2.push_back ( Point3f ( p2.x*dd2, p2.y*dd2, dd2 ) );
}
cout<<"3d-3d pairs: "<<pts1.size() <<endl;
Mat R, t;
pose_estimation_3d3d ( pts1, pts2, R, t );
cout<<"ICP via SVD results: "<<endl;
cout<<"R = "<<R<<endl;
cout<<"t = "<<t<<endl;
cout<<"R_inv = "<<R.t() <<endl;
cout<<"t_inv = "<<-R.t() *t<<endl;
for ( int i=0; i<5; i++ )
{
cout<<"p1 = "<<pts1[i]<<endl;
cout<<"p2 = "<<pts2[i]<<endl;
cout<<"(R*p2+t) = "<<
R * (Mat_<double>(3,1)<<pts2[i].x, pts2[i].y, pts2[i].z) + t
<<endl;
cout<<endl;
}
cout<<"----------------------------------"<<endl;
cout<<"calling bundle adjustment"<<endl;
double cere_rot[3],cere_tranf[3];
cere_rot[0]=0;
cere_rot[1]=0;
cere_rot[2]=0;
cere_tranf[0]=t.at<double>(0,0);
cere_tranf[1]=t.at<double>(1,0);
cere_tranf[2]=t.at<double>(2,0);
// bundleAdjustment( pts1, pts2, R, t );
ceres::Problem problem;
for(int i=0;i<pts1.size();i++)
{
ceres::CostFunction* costfunction=new ceres::AutoDiffCostFunction<cost_function_define,2,3,3>(new cost_function_define(pts1[i],pts2[i]));
problem.AddResidualBlock(costfunction,NULL,cere_rot,cere_tranf);//注意,cere_rot不能为Mat类型
}
ceres::Solver::Options option;
option.linear_solver_type=ceres::DENSE_SCHUR;
//输出迭代信息到屏幕
option.minimizer_progress_to_stdout=true;
//显示优化信息
ceres::Solver::Summary summary;
//开始求解
ceres::Solve(option,&problem,&summary);
//显示优化信息
cout<<summary.BriefReport()<<endl;
// verify p1 = R*p2 + t
cout<<"-----------optional after---------------"<<endl;
Mat cam_3d = ( Mat_<double> ( 3,1 )<<cere_rot[0],cere_rot[1],cere_rot[2]);
Mat cam_9d;
cv::Rodrigues ( cam_3d, cam_9d ); // r为旋转向量形式,用Rodrigues公式转换为矩阵
cout<<"cam_9d:"<<endl<<cam_9d<<endl;
cout<<"cam_t:"<<cere_tranf[0]<<" "<<cere_tranf[1]<<" "<<cere_tranf[2]<<endl;
Mat tranf_3d = ( Mat_<double> ( 3,1 )<<cere_tranf[0],cere_tranf[1],cere_tranf[2]);
for ( int i=0; i<5; i++ )
{
cout<<"p1 = "<<pts1[i]<<endl;
cout<<"p2 = "<<pts2[i]<<endl;
cout<<"(R*p1+t) = "<<
cam_9d * (Mat_<double>(3,1)<<pts1[i].x, pts1[i].y, pts1[i].z) + tranf_3d
<<endl;
cout<<endl;
}
}
void find_feature_matches ( const Mat& img_1, const Mat& img_2,
std::vector<KeyPoint>& keypoints_1,
std::vector<KeyPoint>& keypoints_2,
std::vector< DMatch >& matches )
{
//-- 初始化
Mat descriptors_1, descriptors_2;
// used in OpenCV3
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
// use this if you are in OpenCV2
// Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
//-- 第一步:检测 Oriented FAST 角点位置
detector->detect ( img_1,keypoints_1 );
detector->detect ( img_2,keypoints_2 );
//-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute ( img_1, keypoints_1, descriptors_1 );
descriptor->compute ( img_2, keypoints_2, descriptors_2 );
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> match;
// BFMatcher matcher ( NORM_HAMMING );
matcher->match ( descriptors_1, descriptors_2, match );
//-- 第四步:匹配点对筛选
double min_dist=10000, max_dist=0;
//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for ( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = match[i].distance;
if ( dist < min_dist ) min_dist = dist;
if ( dist > max_dist ) max_dist = dist;
}
printf ( "-- Max dist : %f \n", max_dist );
printf ( "-- Min dist : %f \n", min_dist );
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
for ( int i = 0; i < descriptors_1.rows; i++ )
{
if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )
{
matches.push_back ( match[i] );
}
}
}
Point2d pixel2cam ( const Point2d& p, const Mat& K )
{
return Point2d
(
( p.x - K.at<double> ( 0,2 ) ) / K.at<double> ( 0,0 ),
( p.y - K.at<double> ( 1,2 ) ) / K.at<double> ( 1,1 )
);
}
void pose_estimation_3d3d (
const vector<Point3f>& pts1,
const vector<Point3f>& pts2,
Mat& R, Mat& t
)
{
Point3f p1, p2; // center of mass
int N = pts1.size();
for ( int i=0; i<N; i++ )
{
p1 += pts1[i];
p2 += pts2[i];
}
p1 = Point3f( Vec3f(p1) / N);
p2 = Point3f( Vec3f(p2) / N);
vector<Point3f> q1 ( N ), q2 ( N ); // remove the center
for ( int i=0; i<N; i++ )
{
q1[i] = pts1[i] - p1;
q2[i] = pts2[i] - p2;
}
// compute q1*q2^T
Eigen::Matrix3d W = Eigen::Matrix3d::Zero();
for ( int i=0; i<N; i++ )
{
W += Eigen::Vector3d ( q1[i].x, q1[i].y, q1[i].z ) * Eigen::Vector3d ( q2[i].x, q2[i].y, q2[i].z ).transpose();
}
cout<<"W="<<W<<endl;
// SVD on W
Eigen::JacobiSVD<Eigen::Matrix3d> svd ( W, Eigen::ComputeFullU|Eigen::ComputeFullV );
Eigen::Matrix3d U = svd.matrixU();
Eigen::Matrix3d V = svd.matrixV();
cout<<"U="<<U<<endl;
cout<<"V="<<V<<endl;
Eigen::Matrix3d R_ = U* ( V.transpose() );
Eigen::Vector3d t_ = Eigen::Vector3d ( p1.x, p1.y, p1.z ) - R_ * Eigen::Vector3d ( p2.x, p2.y, p2.z );
// convert to cv::Mat
R = ( Mat_<double> ( 3,3 ) <<
R_ ( 0,0 ), R_ ( 0,1 ), R_ ( 0,2 ),
R_ ( 1,0 ), R_ ( 1,1 ), R_ ( 1,2 ),
R_ ( 2,0 ), R_ ( 2,1 ), R_ ( 2,2 )
);
t = ( Mat_<double> ( 3,1 ) << t_ ( 0,0 ), t_ ( 1,0 ), t_ ( 2,0 ) );
}
代码分析
代码前面是svd求解icp的方法。
代码后面是ceres求解。
注意几点:
- 这里的R不是旋转矩阵,也不是四元数表示的,而是用欧拉角表示的。
通过函数AngleAxisRotatePoint(cere_r,p_1,p_2)
可以对3D点进行旋转。相当于用旋转矩阵去左乘。 - 观测值是两帧观测到的相匹配的3D点,优化变量是相机外参
- 书上求解的结果是第二帧到第一帧的变化矩阵,而这里我求解的是第一帧到第二帧的变化矩阵,因此两者互逆。
- 其他参考上一篇文章:
ceres求解PnP--SLAM 十四讲第七章课后题