AI

Task4 模型训练与验证

2020-05-28  本文已影响0人  泥人冷风

上一章节,构造了一个简单的CNN,并进行误差损失和第一个字符预测准确率的可视化。一个成熟合格的深度学习训练流程至少具备以下功能:

4. 模型训练与验证

以下顺序依次讲解:

4.1 学习目标

4.2 构造验证集

目前机器学习或深度学习的现状如下:

模型的训练中,只能利用训练数据来训练,并不能接触测试集的样本;
这样造成过拟合(Overfitting)和欠拟合(Underfitting):

image.png

如图所示:随着模型复杂度和模型训练轮数的增加,CNN模型在训练集上的误差会降低,但在测试集上的误差会逐渐降低,然后逐渐升高,而我们为了追求的是模型在测试集上的精度越高越好。

导致模型过拟合的原因:

解决方法:

审题:那么针对赛题,给出了训练集和测试集。

训练集,验证集,测试集的作用:

因为训练集和验证集是分开的,所以模型在验证集上面的精度在一定程度上可以反映模型的泛化能力。在划分验证集的时候,需要注意验证集的分布应该与测试集尽量保持一致,不然模型在验证集上的精度就失去了指导意义。

训练集和验证集,但并不一定每次赛题都会有验证集。所以从训练集怎么抽出验证集,方法如下:


image.png

通过有放回的采样方式得到新的训练集和验证集,每次的训练集和验证集都是有区别的。

应用:适用于数据量较小的情况

这里的分布一般指的是与标签相关的统计分布:

4.3 模型训练与验证

使用Pytorch来完成CNN的训练和验证过程,CNN网络结构与之前的章节中保持一致。我们需要完成的逻辑结构如下:

train_loader = torch.utils.data.DataLoader(
    train_dataset,
    batch_size=10, 
    shuffle=True, 
    num_workers=10, 
)
    
val_loader = torch.utils.data.DataLoader(
    val_dataset,
    batch_size=10, 
    shuffle=False, 
    num_workers=10, 
)

model = SVHN_Model1()
criterion = nn.CrossEntropyLoss (size_average=False)
optimizer = torch.optim.Adam(model.parameters(), 0.001)
best_loss = 1000.0
for epoch in range(20):
    print('Epoch: ', epoch)

    train(train_loader, model, criterion, optimizer, epoch)
    val_loss = validate(val_loader, model, criterion)
    
    # 记录下验证集精度
    if val_loss < best_loss:
        best_loss = val_loss
        torch.save(model.state_dict(), './model.pt')

其中每个Epoch的训练代码如下:

def train(train_loader, model, criterion, optimizer, epoch):
    # 切换模型为训练模式
    model.train()

    for i, (input, target) in enumerate(train_loader):
        c0, c1, c2, c3, c4, c5 = model(data[0])
        loss = criterion(c0, data[1][:, 0]) + \
                criterion(c1, data[1][:, 1]) + \
                criterion(c2, data[1][:, 2]) + \
                criterion(c3, data[1][:, 3]) + \
                criterion(c4, data[1][:, 4]) + \
                criterion(c5, data[1][:, 5])
        loss /= 6
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

其中每个Epoch的验证代码如下:

def validate(val_loader, model, criterion):
    # 切换模型为预测模型
    model.eval()
    val_loss = []

    # 不记录模型梯度信息
    with torch.no_grad():
        for i, (input, target) in enumerate(val_loader):
            c0, c1, c2, c3, c4, c5 = model(data[0])
            loss = criterion(c0, data[1][:, 0]) + \
                    criterion(c1, data[1][:, 1]) + \
                    criterion(c2, data[1][:, 2]) + \
                    criterion(c3, data[1][:, 3]) + \
                    criterion(c4, data[1][:, 4]) + \
                    criterion(c5, data[1][:, 5])
            loss /= 6
            val_loss.append(loss.item())
    return np.mean(val_loss)

4.4 模型保存与加载

在Pytorch中模型的保存和加载:

torch.save(model_object.state_dict(), 'model.pt')
model.load_state_dict(torch.load(' model.pt'))

在参加本次比赛的过程中,按照老师以下的方法进行:

上一篇 下一篇

猜你喜欢

热点阅读