Scissor:联合表型数据,Bulk-seq和scRNA(2)
前面一个帖子讲了scissor的原理以及paper中的一些应用实例。几天我们来测试这个工具。
========安装========
devtools::install_github('sunduanchen/Scissor')
devtools::install_github("jinworks/scAB")
注:因为我们还要用到scAB工具中的例子,所以顺便安装一下。
library(Scissor)
library(Seurat)
library(preprocessCore)
library(scAB)
=======加载数据======
data("data_survival")
dim(sc_dataset)
sc_dataset
head(bulk_dataset[,1:10])
head(phenotype)
=======测试数据=======
sc_dataset <- run_seurat(sc_dataset,verbose = FALSE)
sc_dataset
UMAP_celltype <- DimPlot(sc_dataset, reduction ="umap",group.by="celltype",label = T)
UMAP_celltype
bulk2 <- as.matrix(bulk_dataset) #我也不清楚我在linux下面报错了,所以强制转换了一下
infos1 <- Scissor(bulk2, sc_dataset, phenotype, alpha = 0.05,family = "cox", Save_file = './Scissor_survival.RData') #phenotype也没让人选,哎。。。
运行大概几分钟,在本地文件夹下即可生成结果Rdata,检查结果可见共识别429个Scissor+细胞(即与表型呈正相关的细胞)和1001个Scissor阴性细胞(即与表型呈负相关的细胞)。
========可视化结果===========
Scissor_select <- rep("Background", ncol(sc_dataset))
names(Scissor_select) <- colnames(sc_dataset)
Scissor_select[infos1$Scissor_pos] <- "Scissor+"
Scissor_select[infos1$Scissor_neg] <- "Scissor-"
sc_dataset <- AddMetaData(sc_dataset, metadata = Scissor_select, col.name = "scissor")
UMAP_scissor <- DimPlot(sc_dataset, reduction = 'umap',
group.by = 'scissor',
cols = c('grey','royalblue','indianred1'),
pt.size = 0.001, order = c("Scissor+","Scissor-"))
patchwork::wrap_plots(plots = list(UMAP_celltype,UMAP_scissor), ncol = 2)
下面,我们统计一下scissor细胞在各个cluster的分布情况:
table(sc_dataset$scissor,sc_dataset$celltype)
从结果可以发现,Scissor+ 细胞主要为肿瘤细胞,Scissor阴性细胞主要为T细胞和CAFs:
用下面的图展示会更直观一点:
library(gplots)
balloonplot(table(sc_dataset$scissor,sc_dataset$celltype))
但是,问题来了,这个出来的结果,到底如何与生物学问题挂钩和解释呢?我看phenotype里面有time和status两个表型,是与这2个表型都密切相关吗?