Python可视化

一天一图学Python可视化(2):让条形图更高级

2018-12-26  本文已影响103人  老Q在折腾

温故知新:

在昨天,我们学习了使用seaborn.lmplot()来绘制回归图,用来表示变量之间的线性关系。它主要是在散点图的基础上,绘制了一条直线,而这条直线(也可以是曲线)则表明了模型预测的变量之间的关系。忘记的同学可以回去再看一遍。

今天,我们的目标是从一个小案例中学习以下几点:

  1. 调色板
  2. 条形图
  3. 图形矩阵(多子图)

条形图矩阵

老规矩,我们先看代码和效果,然后再详解每一个细节。

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="white", context="talk")
rs = np.random.RandomState(8)

# 设置matplotlib图形和坐标轴对象
f, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(7, 5), sharex=True)

# 生成一些序列数据
x = np.array(list("ABCDEFGHIJ"))
y1 = np.arange(1, 11)
sns.barplot(x=x, y=y1, palette="rocket", ax=ax1)
ax1.axhline(0, color="k", clip_on=False)
ax1.set_ylabel("Sequential")

# 让数据围绕着0点发散
y2 = y1 - 5.5
sns.barplot(x=x, y=y2, palette="vlag", ax=ax2)
ax2.axhline(0, color="k", clip_on=False)
ax2.set_ylabel("Diverging")

# 随机调整数据的顺序,构造定性数据
y3 = rs.choice(y1, len(y1), replace=False)
sns.barplot(x=x, y=y3, palette="deep", ax=ax3)
ax3.axhline(0, color="k", clip_on=False)
ax3.set_ylabel("Qualitative")

# 调整图形细节
sns.despine(bottom=True)
plt.setp(f.axes, yticks=[])
plt.tight_layout(h_pad=2)
image

可以看到,我们实现了一个3 * 1的图形矩阵,每个子图由一幅条形图占据,且他们被我们分别指定了不同的色彩组合。

那么接下来,我们就来看一下它们是如何一步步实现的吧!

好了,我们在今天尝试了条形图、调色板、子图(矩阵图)、参考线等知识点的使用,你学会了吗?

上一篇 下一篇

猜你喜欢

热点阅读