机器学习实战-决策树

2017-10-23  本文已影响24人  z3r0me

决策树

决策树是一个选择的过程,以树的结构来展示,其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出。
如找对象决策树

1_3.png

构造决策树

构造决策树的问题在于哪个特征在划分数据分类中起到决定性作用,为此要去评估起决定作用的特征值。
这里介绍两种方法信息增益和基尼不纯度

信息增益

信息增益是划分数据集之前之后的变化。信息增益最高的特征就是最好的选择。
集合信息的度量方式称之为熵或香农熵 ,其信息的熵计算公式为

pi为选择该类的概率
限制把数据集D 分成D1,D2,D3.... ,则划分后的信息熵为


那么信息增益则为:

实现代码

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        #iterate over all the features
        featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
        uniqueVals = set(featList)       #get a set of unique values
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)     
        infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
        if (infoGain > bestInfoGain):       #compare this to the best gain so far
            bestInfoGain = infoGain         #if better than current best, set to best
            bestFeature = i
    return bestFeature                      #returns an integer

基尼不纯度

同样的可以通过基尼不纯度来划分数据集
基尼不纯度的定义:

在划分k个子集后数据集的不纯度的公式为

前后的变化:

递归构建决策树

这里使用信息增益的方法来选择特征,通过递归来构造决策树

def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList): 
        return classList[0]#stop splitting when all of the classes are equal
    if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
    return myTree  

可视化决策树

创建的决策树以字典的新式返回,使用graphviz来绘制
以下是隐形眼镜决策树

1.jpg
上一篇下一篇

猜你喜欢

热点阅读