奥数自学研究

高中奥数 2022-04-01

2022-04-01  本文已影响0人  不为竞赛学奥数

构造数列

在遇到与n有关的不等式时,可以考虑构造辅助数列,并通过数列的性质(如单调性)来证题.

2022-03-04-01

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P078 例13)

x_{n}=\sqrt{2+\sqrt[3]{3+\cdots +\sqrt[n]{n}}},求证:
x_{n+1}-x_{n}<\dfrac{1}{n!},n=2,3,\cdots.
证明

n=2时,x_{3}-x_{2}=\sqrt{2+\sqrt[3]{3}}-\sqrt{2}<\dfrac{1}{2!}.

n\geqslant 3时,构造数列\left\{a_{i}\right\}\left\{b_{i}\right\}\left\{c_{i}\right\}如下:
a_{i}=\sqrt[i]{i+\sqrt[i+1]{\left(i+1\right)+\cdots+\sqrt[n]{n+\sqrt[n+1]{n+1}}}},i=2,\cdots,n+1;
b_{i}=\sqrt[i]{i+\sqrt[i+1]{\left(i+1\right)+\cdots+\sqrt[n]{n+}}},i=2,3,\cdots,n,b_{n+1}=0;
c_{i}=a_{i}^{i-1}+a_{i}^{i-2}b_{i}+\cdots +a_{i}b_{i}^{i-2}+b_{i}^{i-1},i=2,3,\cdots.
显然,x_{n+1}=a_{2},x_{n}=b_{2},且
\left(a_{i}-b_{i}\right)c_{i}=a_{i}^{i}-b_{i}^{i}=a_{i+1}-b_{i+1}.
a_{i}-b_{i}=\dfrac{a_{i+1}-b_{n+1}}{c_{i}},i=2,3,\cdots ,n.

将以上n-1个等式相乘,并注意到
a_{n+1}-b_{n+1}=\left(n+1\right)^{\frac{1}{n+1}},
则有a_{2}-b_{2}=\dfrac{a_{n+1}-b_{n+1}}{c_{2}c_{3}\cdot c_{n}}=\dfrac{\left(n+1\right)^{\frac{1}{n+1}}}{c_{2}c_{3}\cdot c_{n}}.

又因为a_{k}>b_{k}\geqslant \sqrt[k]{k},故c_{k}\geqslant k\cdot k^{\frac{k-1}{k}}>k\cdot k^{\frac{k-1}{k+1}},于是
x_{n+1}-x_{n}=a_{2}-b_{2}<\dfrac{1}{n!}\cdot \dfrac{\left(n+1\right)^{\frac{1}{n+1}}}{n^{\frac{n-1}{n+1}}}<\dfrac{1}{n!}.
上式中当n>2时,\dfrac{n+1}{n^{n-1}}<\dfrac{2n}{n^{2}}<1是明显的.

2022-03-04-01

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P078 例14)

实数a_{1},a_{2},\cdots,a_{n}满足a_{1}\cdot a_{2}+\cdots +a_{n}=0,求证:
\max\limits_{1\leqslant k\leqslant n}\left(a_{k}^2\right)\leqslant\dfrac{n}{3}\sum\limits_{i=1}^{n-1}\left(a_{i}-a_{i+1}\right)^{2}.
证明

只需对任意1\leqslant k\leqslant n,证明不等式成立即可.

d_{k}=a_{k}-a_{k+1},k=1,2,\cdots ,n-1,则
a_{k}=a_{k},
a_{k+1}=a_{k}-d_{k},a_{k+2}=a_{k}-d_{k}-d_{k+1},\cdots,a_{n}=a_{k}-d_{k}-d_{k+1}-\cdots -d_{n-1},
a_{k-1}=a_{k}+d_{k-1},a_{k-2}=a_{k}+d_{k-1}+d_{k-2}+\cdots +d_{1},
把上面这n个等式相加,并利用a_{1}+a_{2}+\cdots +a_{n}=0,可得
na_{k}-\left(n-k\right)d_{k}-\left(n-k-1\right)d_{k+1}-\cdots -d_{n-1}+\left(k-1\right)d_{k-1}+\left(k-2\right)d_{k-2}+\cdots +d_{1}=0.
由Cauchy不等式可得
\begin{aligned} \left(n a_{k}\right)^{2}=&\left((n-k) d_{k}+(n-k-1) d_{k+1}+\cdots+d_{n-1}\right.\\ &\left.-(k-1) d_{k-1}-(k-2) d_{k-2}-\cdots-d_{1}\right)^{2} \\ \leqslant &\left(\sum\limits_{i=1}^{k-1} i^{2}+\sum\limits_{i=1}^{n-k} i^{2}\right)\left(\sum\limits_{i=1}^{n-1} d_{i}^{2}\right) \\ \leqslant &\left(\sum\limits_{i=1}^{n-1} i^{2}\right)\left(\sum\limits_{i=1}^{n-1} d_{i}^{2}\right)\\ =&\dfrac{n(n-1)(2 n-1)}{6}\left(\sum\limits_{i=1}^{n-1} d_{i}^{2}\right) \\ \leqslant & \frac{n^{3}}{3}\left(\sum\limits_{i=1}^{n-1} d_{i}^{2}\right), \end{aligned}
所以a_{k}^{2} \leqslant \dfrac{n}{3} \sum\limits_{i=1}^{n-1}\left(a_{i}-a_{i+1}\right)^{2}.

上一篇 下一篇

猜你喜欢

热点阅读