RNAseq数据分析

简易的Msigdb数据包

2020-10-31  本文已影响0人  一只烟酒僧

参考连接:https://www.jianshu.com/p/f2febb3123d8

一、安装

BiocManager::install("msigdbr")

二、简单使用

msigdbr_species()
# A tibble: 11 x 2
   species_name             species_common_name      
   <chr>                    <chr>                    
 1 Bos taurus               cattle                   
 2 Caenorhabditis elegans   roundworm                
 3 Canis lupus familiaris   dog                      
 4 Danio rerio              zebrafish                
 5 Drosophila melanogaster  fruit fly                
 6 Gallus gallus            chicken                  
 7 Homo sapiens             human                    
 8 Mus musculus             house mouse              
 9 Rattus norvegicus        Norway rat               
10 Saccharomyces cerevisiae baker's or brewer's yeast
11 Sus scrofa               pig  

hallmarker<-msigdbr(species = "Mus musculus",category = "H")
# A tibble: 7,309 x 17
   gs_cat gs_subcat gs_name entrez_gene gene_symbol human_entrez_ge… human_gene_symb… gs_id gs_pmid gs_geoid gs_exact_source
   <chr>  <chr>     <chr>         <int> <chr>                  <int> <chr>            <chr> <chr>   <chr>    <chr>          
 1 H      ""        HALLMA…       11303 Abca1                     19 ABCA1            M5905 ""      ""       ""             
 2 H      ""        HALLMA…       74610 Abcb8                  11194 ABCB8            M5905 ""      ""       ""             
 3 H      ""        HALLMA…       52538 Acaa2                  10449 ACAA2            M5905 ""      ""       ""             
 4 H      ""        HALLMA…       11363 Acadl                     33 ACADL            M5905 ""      ""       ""             
 5 H      ""        HALLMA…       11364 Acadm                     34 ACADM            M5905 ""      ""       ""             
 6 H      ""        HALLMA…       11409 Acads                     35 ACADS            M5905 ""      ""       ""             
 7 H      ""        HALLMA…      104112 Acly                      47 ACLY             M5905 ""      ""       ""             
 8 H      ""        HALLMA…       11429 Aco2                      50 ACO2             M5905 ""      ""       ""             
 9 H      ""        HALLMA…       11430 Acox1                     51 ACOX1            M5905 ""      ""       ""             
10 H      ""        HALLMA…       11512 Adcy6                    112 ADCY6            M5905 ""      ""       ""             
# … with 7,299 more rows, and 6 more variables: gs_url <chr>, gs_description <chr>, species_name <chr>,
#   species_common_name <chr>, ortholog_sources <chr>, num_ortholog_sources <dbl>



C1<-msigdbr(category = "C1")  
   gs_cat gs_subcat gs_name entrez_gene gene_symbol human_entrez_ge… human_gene_symb… gs_id gs_pmid gs_geoid gs_exact_source
   <chr>  <chr>     <chr>         <int> <chr>                  <int> <chr>            <chr> <chr>   <chr>    <chr>          
 1 C1     ""        chr10p…       26983 ABCD1P2                26983 ABCD1P2          M183… ""      ""       ""             
 2 C1     ""        chr10p…      399746 ACTR3BP5              399746 ACTR3BP5         M183… ""      ""       ""             
 3 C1     ""        chr10p…   100288319 AK3P5              100288319 AK3P5            M183… ""      ""       ""             
 4 C1     ""        chr10p…   100420618 AL117339.4         100420618 AL117339.4       M183… ""      ""       ""             
 5 C1     ""        chr10p…       91074 ANKRD30A               91074 ANKRD30A         M183… ""      ""       ""             
 6 C1     ""        chr10p…       94134 ARHGAP12               94134 ARHGAP12         M183… ""      ""       ""             
 7 C1     ""        chr10p…      646348 ARL6IP1P2             646348 ARL6IP1P2        M183… ""      ""       ""             
 8 C1     ""        chr10p…   100462843 ATP6V1G1P4         100462843 ATP6V1G1P4       M183… ""      ""       ""             
 9 C1     ""        chr10p…      554049 C1DP1                 554049 C1DP1            M183… ""      ""       ""             
10 C1     ""        chr10p…       79741 CCDC7                  79741 CCDC7            M183… ""      ""       ""             
# … with 40,046 more rows, and 6 more variables: gs_url <chr>, gs_description <chr>, species_name <chr>,
#   species_common_name <chr>, ortholog_sources <chr>, num_ortholog_sources <dbl>

三、富集分析

m_t2g = m_df %>% dplyr::select(gs_name, entrez_gene) %>% as.data.frame()
enricher(gene = gene_ids_vector, TERM2GENE = m_t2g, ...)
上一篇 下一篇

猜你喜欢

热点阅读