Java

ArrayList源码解析

2019-10-30  本文已影响0人  若与

最近在整理数据结构和算法,发现java的源码很优秀。就学习一下, 这里做个记录。
我使用的是jdk8

熟悉java的都知道ArrayList.
动态数组容器类。
具体的使用方法这里就不介绍了。

先概况看类,再细化具体method

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
    private static final long serialVersionUID = 8683452581122892189L;

    /**
     * Default initial capacity.
     */
    private static final int DEFAULT_CAPACITY = 10;

    /**
     * Shared empty array instance used for empty instances.
     */
    private static final Object[] EMPTY_ELEMENTDATA = {};

    /**
     * Shared empty array instance used for default sized empty instances. We
     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
     * first element is added.
     */
    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

    /**
     * The array buffer into which the elements of the ArrayList are stored.
     * The capacity of the ArrayList is the length of this array buffer. Any
     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
     * will be expanded to DEFAULT_CAPACITY when the first element is added.
     */
    transient Object[] elementData; // non-private to simplify nested class access

    /**
     * The size of the ArrayList (the number of elements it contains).
     *
     * @serial
     */
    private int size;
    
    ....

我们注意一下继承的类以及实现的接口
其中implements List<E>, RandomAccess, Cloneable, java.io.Serializable

可以看到上面有一个

    transient Object[] elementData;
    private int size;

这里定义一个数组用于保存数据, size记录数组中元素数量

我们看一下构造方法

    // 给定容量大小
    public ArrayList(int initialCapacity) {
        if (initialCapacity > 0) {
            this.elementData = new Object[initialCapacity];
        } else if (initialCapacity == 0) {
            this.elementData = EMPTY_ELEMENTDATA;
        } else {
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        }
    }
    
    // 没有指定容量,默认一个空数组
    public ArrayList() {
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    }
    
    // 直接放入一个容器对象,处理逻辑,将容器中数据copy到 成员变量 elementData 数组中
    public ArrayList(Collection<? extends E> c) {
        elementData = c.toArray();
        if ((size = elementData.length) != 0) {
            // defend against c.toArray (incorrectly) not returning Object[]
            // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
            if (elementData.getClass() != Object[].class)
                elementData = Arrays.copyOf(elementData, size, Object[].class);
        } else {
            // replace with empty array.
            this.elementData = EMPTY_ELEMENTDATA;
        }
    }

add

    // 在尾部追加数据的
    public boolean add(E e) {
        modCount++; // 你不修改次数
        add(e, elementData, size); // 加入数据
        return true;
    }
    
   // s是索引位置
   private void add(E e, Object[] elementData, int s) {
        if (s == elementData.length)  // 如果添加数据溢出了,就动态扩容
            elementData = grow();
        elementData[s] = e;
        size = s + 1;
    }

   private Object[] grow() {
        return grow(size + 1);
    }
    
   // 这里扩容,并将原数组数据copy到新扩容的数组中
   private Object[] grow(int minCapacity) {
        return elementData = Arrays.copyOf(elementData,
                                           newCapacity(minCapacity));
    }

下面介绍一下,具体的扩容算法

    private int newCapacity(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + (oldCapacity >> 1); // 1.5倍
        if (newCapacity - minCapacity <= 0) {
            if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
                return Math.max(DEFAULT_CAPACITY, minCapacity);
            if (minCapacity < 0) // overflow
                throw new OutOfMemoryError();
            return minCapacity;
        }
        return (newCapacity - MAX_ARRAY_SIZE <= 0)
            ? newCapacity
            : hugeCapacity(minCapacity);
    }

正常情况下就是扩容 1.5倍, 另外也做一些边缘条件的判断。

我们再看一下删除

remove

    public E remove(int index) {
        Objects.checkIndex(index, size);
        final Object[] es = elementData;

        @SuppressWarnings("unchecked") E oldValue = (E) es[index];
        fastRemove(es, index);

        return oldValue;
    }
    
    // 删除指定位置数据,指定索引后面的数据进行搬移
    private void fastRemove(Object[] es, int i) {
        modCount++;
        final int newSize;
        if ((newSize = size - 1) > i)
            System.arraycopy(es, i + 1, es, i, newSize - i);
        es[size = newSize] = null;
    }

迭代

先看源码吧

实现的迭代的接口

    public ListIterator<E> listIterator(int index) {
        rangeCheckForAdd(index);
        return new ListItr(index);
    }

    public ListIterator<E> listIterator() {
        return new ListItr(0);
    }

    public Iterator<E> iterator() {
        return new Itr();
    }


其中 Iterator的接口方法

我们看下ArrayList的具体实现代码:

    /**
     * An optimized version of AbstractList.Itr
     */
    private class Itr implements Iterator<E> {
        int cursor;       // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;

        // prevent creating a synthetic constructor
        Itr() {}

        public boolean hasNext() {
            return cursor != size;
        }

        @SuppressWarnings("unchecked")
        public E next() {
            checkForComodification();
            int i = cursor;
            if (i >= size)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i + 1;
            return (E) elementData[lastRet = i];
        }

        public void remove() {
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                ArrayList.this.remove(lastRet);
                cursor = lastRet;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        @Override
        public void forEachRemaining(Consumer<? super E> action) {
            Objects.requireNonNull(action);
            final int size = ArrayList.this.size;
            int i = cursor;
            if (i < size) {
                final Object[] es = elementData;
                if (i >= es.length)
                    throw new ConcurrentModificationException();
                for (; i < size && modCount == expectedModCount; i++)
                    action.accept(elementAt(es, i));
                // update once at end to reduce heap write traffic
                cursor = i;
                lastRet = i - 1;
                checkForComodification();
            }
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

上面通过

        int cursor;       // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;

这三个值,暂时保存状态,进行迭代实现的。 modCount用于在迭代中操作数据出现异常,用于记录等作用。

对于 ArrayList,它的特点是内部采用动态数组实现,这决定了以下几点。

1)可以随机访问,按照索引位置进行访问效率很高,用算法描述中的术语,效率是O(1),简单说
就是可以一步到位。
2)除非数组已排序,否则按照内容查找元素效率比较低,具体是O(N),N为数组内容长度,也就
是说,性能与数组长度成正比。
3)添加元素的效率还可以,重新分配和复制数组的开销被平摊了,具体来说,添加N个元素的效率为O(N)。
4)插入和删除元素的效率比较低,因为需要移动元素,具体为O(N)

这里只是简单的介绍一些,只要把握底层是数组这条主线,其他的就简单了。

上一篇下一篇

猜你喜欢

热点阅读