iOS 底层探索之路

iOS 底层探索:多线程GCD的使用

2020-11-05  本文已影响0人  欧德尔丶胡

iOS 底层探索: 学习大纲 OC篇

前言

GCD简介
  • GCD全称是 Grand Central Dispatch
  • 纯 C 语言,提供了非常多强大的函数 GCD的优势
  • GCD 是苹果公司为多核的并行运算提出的解决方案
  • GCD 会自动利用更多的CPU内核(比如双核、四核)
  • GCD 会自动管理线程的生命周期(创建线程、调度任务、销毁线程) 程序员只需要告诉 GCD 想要- 执行什么任务,不需要编写任何线程管理代码

准备

一 、GCD 的两个核心(任务与队列)

任务:就是执行操作的意思,换句话说就是你在线程中执行的那段代码。在 GCD 中是放在 block中的。执行任务有两种方式:同步执行(sync)和异步执行(async)。两者的主要区别是:是否等待队列的任务执行结束,以及是否具备开启新线程的能力。

  • 同步执行(sync):
    • 同步添加任务到指定的队列中,在添加的任务执行结束之前,会一直等待,直到队列里面的任务完成之后再继续执行。
    • 只能在当前线程中执行任务,不具备开启新线程的能力。
  • 异步执行(async):
    • 异步添加任务到指定的队列中,它不会做任何等待,可以继续执行任务。
      可以在新的线程中执行任务,具备开启新线程的能力
    • 注意: 异步执行(async)虽然具有开启新线程的能力,但是并不一定开启新线程。这跟任务所指定的队列类型有关(下面会讲)。

队列(Dispatch Queue):这里的队列指执行任务的等待队列,即用来存放任务的队列。队列是一种特殊的线性表,采用 FIFO(先进先出) 的原则,即新任务总是被插入到队列的末尾,而读取任务的时候总是从队列的头部开始读取。每读取一个任务,则从队列中释放一个任务。

在 GCD 中有两种队列:串行队列和并发队列。两者都符合FIFO(先进先出)的原则。两者的主要区别是:执行顺序不同,以及开启线程数不同。

  • 串行队列(Serial Dispatch Queue):
    每次只有一个任务被执行。让任务一个接着一个地执行。(只开启一个线程,一个任务执行完毕后,再执行下一个任务)
  • 并发队列(Concurrent Dispatch Queue):
    可以让多个任务并发(同时)执行。(可以开启多个线程,并且同时执行任务)

注意:并发队列的并发功能只有在异步(dispatch_async)函数下才有效

两者具体区别如下两图所示。


二 、GCD 的使用

GCD的使用步骤其实很简单,只有两步。

下边来看看队列的创建方法/获取方法,以及任务的创建方法。

(1).队列的创建方法/获取方法

可以使用dispatch_queue_create来创建队列,需要传入两个参数,第一个参数表示队列的唯一标识符,用于 DEBUG,可为空,Dispatch Queue的名称推荐使用应用程序ID这种逆序全程域名;第二个参数用来识别是串行队列还是并发队列。DISPATCH_QUEUE_SERIAL 表示串行队列DISPATCH_QUEUE_CONCURRENT 表示并发队列。

dispatch_queue_t queue = 
dispatch_queue_create("com.lgcooci.seial", DISPATCH_QUEUE_SERIAL);
dispatch_queue_t queue = 
dispatch_queue_create("com.lgcooci.concurrent", DISPATCH_QUEUE_CONCURRENT);

对于串行队列,GCD 提供了的一种特殊的串行队列:主队列(Main Dispatch Queue)。

全局并发队列的获取方法

dispatch_queue_t queue = 
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
(2).任务的创建方法

GCD 提供了同步执行任务的创建方法dispatch_sync和异步执行任务创建方法dispatch_async

// 同步执行任务创建方法
dispatch_sync(queue, ^{
    // 这里放同步执行任务代码
});
// 异步执行任务创建方法
dispatch_async(queue, ^{
    // 这里放异步执行任务代码
});

虽然使用GCD只需两步,但是既然我们有两种队列(串行队列/并发队列),两种任务执行方式(同步执行/异步执行),那么我们就有了四种不同的组合方式。这四种不同的组合方式是:

实际上,刚才还说了两种特殊队列:全局并发队列主队列。全局并发队列可以作为普通并发队列来使用。但是主队列因为有点特殊,所以我们就又多了两种组合方式。这样就有六种不同的组合方式了。

那么这几种不同组合方式各有什么区别呢,这里为了方便,先上结果,再来讲解。你可以直接查看表格结果,然后跳过

区别 并发队列 串行队列 主队列
同步(sync) 没有开启新线程 串行执行任务 没有开启新线程,串行执行任务.主线程调用:死锁卡住不执行其他线程调用:没有开启新线程,串行执行任务
异步(async) 有开启新线程, 并发执行任务 有开启新线程(1条),串行执行任务 没有开启新线程,串行执行任务

下边我们来分别讲讲这几种不同的组合方式的使用方法。

(3).GCD 的基本使用

3.1 同步执行 + 并发队列

在当前线程中执行任务,不会开启新线程,执行完一个任务,再执行下一个任务。

// 同步执行 + 并发队列
// 特点:在当前线程中执行任务,不会开启新线程,执行完一个任务,再执行下一个任务。
 
- (void)syncConcurrent {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"syncConcurrent---begin");
    
    dispatch_queue_t queue = dispatch_queue_create("net.bujige.testQueue", DISPATCH_QUEUE_CONCURRENT);
    
    dispatch_sync(queue, ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_sync(queue, ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_sync(queue, ^{
        // 追加任务3
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    NSLog(@"syncConcurrent---end");
}

输出结果:
2018-02-23 20:34:55.095932+0800 YSC-GCD-demo[19892:4996930] currentThread---<NSThread: 0x60400006bbc0>{number = 1, name = main}
2018-02-23 20:34:55.096086+0800 YSC-GCD-demo[19892:4996930] syncConcurrent---begin
2018-02-23 20:34:57.097589+0800 YSC-GCD-demo[19892:4996930] 1---<NSThread: 0x60400006bbc0>{number = 1, name = main}
2018-02-23 20:34:59.099100+0800 YSC-GCD-demo[19892:4996930] 1---<NSThread: 0x60400006bbc0>{number = 1, name = main}
2018-02-23 20:35:01.099843+0800 YSC-GCD-demo[19892:4996930] 2---<NSThread: 0x60400006bbc0>{number = 1, name = main}
2018-02-23 20:35:03.101171+0800 YSC-GCD-demo[19892:4996930] 2---<NSThread: 0x60400006bbc0>{number = 1, name = main}
2018-02-23 20:35:05.101750+0800 YSC-GCD-demo[19892:4996930] 3---<NSThread: 0x60400006bbc0>{number = 1, name = main}
2018-02-23 20:35:07.102414+0800 YSC-GCD-demo[19892:4996930] 3---<NSThread: 0x60400006bbc0>{number = 1, name = main}
2018-02-23 20:35:07.102575+0800 YSC-GCD-demo[19892:4996930] syncConcurrent---end

从同步执行 + 并发队列中可看到:

3.2 异步执行 + 并发队列

可以开启多个线程,任务交替(同时)执行。

/** 异步执行 + 并发队列
 * 特点:可以开启多个线程,任务交替(同时)执行。
 */
 
- (void)asyncConcurrent {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"asyncConcurrent---begin");
    
    dispatch_queue_t queue = dispatch_queue_create("net.bujige.testQueue", DISPATCH_QUEUE_CONCURRENT);
    
    dispatch_async(queue, ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_async(queue, ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_async(queue, ^{
        // 追加任务3
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    NSLog(@"asyncConcurrent---end");
}

    输出结果:
    2018-02-23 20:36:41.769269+0800 YSC-GCD-demo[19929:5005237] currentThread---<NSThread: 0x604000062d80>{number = 1, name = main}
    2018-02-23 20:36:41.769496+0800 YSC-GCD-demo[19929:5005237] asyncConcurrent---begin
    2018-02-23 20:36:41.769725+0800 YSC-GCD-demo[19929:5005237] asyncConcurrent---end
    2018-02-23 20:36:43.774442+0800 YSC-GCD-demo[19929:5005566] 2---<NSThread: 0x604000266f00>{number = 5, name = (null)}
    2018-02-23 20:36:43.774440+0800 YSC-GCD-demo[19929:5005567] 3---<NSThread: 0x60000026f200>{number = 4, name = (null)}
    2018-02-23 20:36:43.774440+0800 YSC-GCD-demo[19929:5005565] 1---<NSThread: 0x600000264800>{number = 3, name = (null)}
    2018-02-23 20:36:45.779286+0800 YSC-GCD-demo[19929:5005567] 3---<NSThread: 0x60000026f200>{number = 4, name = (null)}
    2018-02-23 20:36:45.779302+0800 YSC-GCD-demo[19929:5005565] 1---<NSThread: 0x600000264800>{number = 3, name = (null)}
    2018-02-23 20:36:45.779286+0800 YSC-GCD-demo[19929:5005566] 2---<NSThread: 0x604000266f00>{number = 5, name = (null)}

在异步执行 + 并发队列中可以看出:

接下来再来讲讲串行队列的两种执行方式。

3.3 同步执行 + 串行队列

不会开启新线程,在当前线程执行任务。任务是串行的,执行完一个任务,再执行下一个任务。

/**
 * 同步执行 + 串行队列
 * 特点:不会开启新线程,在当前线程执行任务。任务是串行的,执行完一个任务,再执行下一个任务。
 */
 
- (void)syncSerial {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"syncSerial---begin");
    
    dispatch_queue_t queue = dispatch_queue_create("net.bujige.testQueue", DISPATCH_QUEUE_SERIAL);
    
    dispatch_sync(queue, ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    dispatch_sync(queue, ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    dispatch_sync(queue, ^{
        // 追加任务3
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    NSLog(@"syncSerial---end");
}

    输出结果为:
    2018-02-23 20:39:37.876811+0800 YSC-GCD-demo[19975:5017162] currentThread---<NSThread: 0x604000079400>{number = 1, name = main}
    2018-02-23 20:39:37.876998+0800 YSC-GCD-demo[19975:5017162] syncSerial---begin
    2018-02-23 20:39:39.878316+0800 YSC-GCD-demo[19975:5017162] 1---<NSThread: 0x604000079400>{number = 1, name = main}
    2018-02-23 20:39:41.879829+0800 YSC-GCD-demo[19975:5017162] 1---<NSThread: 0x604000079400>{number = 1, name = main}
    2018-02-23 20:39:43.880660+0800 YSC-GCD-demo[19975:5017162] 2---<NSThread: 0x604000079400>{number = 1, name = main}
    2018-02-23 20:39:45.881265+0800 YSC-GCD-demo[19975:5017162] 2---<NSThread: 0x604000079400>{number = 1, name = main}
    2018-02-23 20:39:47.882257+0800 YSC-GCD-demo[19975:5017162] 3---<NSThread: 0x604000079400>{number = 1, name = main}
    2018-02-23 20:39:49.883008+0800 YSC-GCD-demo[19975:5017162] 3---<NSThread: 0x604000079400>{number = 1, name = main}
    2018-02-23 20:39:49.883253+0800 YSC-GCD-demo[19975:5017162] syncSerial---end

在同步执行 + 串行队列可以看到:

3.4 异步执行 + 串行队列

会开启新线程,但是因为任务是串行的,执行完一个任务,再执行下一个任务

/**
 * 异步执行 + 串行队列
 * 特点:会开启新线程,但是因为任务是串行的,执行完一个任务,再执行下一个任务。
 */

- (void)asyncSerial {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"asyncSerial---begin");
    
    dispatch_queue_t queue = dispatch_queue_create("net.bujige.testQueue", DISPATCH_QUEUE_SERIAL);
    
    dispatch_async(queue, ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    dispatch_async(queue, ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    dispatch_async(queue, ^{
        // 追加任务3
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    NSLog(@"asyncSerial---end");
}

    输出结果为:
    2018-02-23 20:41:17.029999+0800 YSC-GCD-demo[20008:5024757] currentThread---<NSThread: 0x604000070440>{number = 1, name = main}
    2018-02-23 20:41:17.030212+0800 YSC-GCD-demo[20008:5024757] asyncSerial---begin
    2018-02-23 20:41:17.030364+0800 YSC-GCD-demo[20008:5024757] asyncSerial---end
    2018-02-23 20:41:19.035379+0800 YSC-GCD-demo[20008:5024950] 1---<NSThread: 0x60000026e100>{number = 3, name = (null)}
    2018-02-23 20:41:21.037140+0800 YSC-GCD-demo[20008:5024950] 1---<NSThread: 0x60000026e100>{number = 3, name = (null)}
    2018-02-23 20:41:23.042220+0800 YSC-GCD-demo[20008:5024950] 2---<NSThread: 0x60000026e100>{number = 3, name = (null)}
    2018-02-23 20:41:25.042971+0800 YSC-GCD-demo[20008:5024950] 2---<NSThread: 0x60000026e100>{number = 3, name = (null)}
    2018-02-23 20:41:27.047690+0800 YSC-GCD-demo[20008:5024950] 3---<NSThread: 0x60000026e100>{number = 3, name = (null)}
    2018-02-23 20:41:29.052327+0800 YSC-GCD-demo[20008:5024950] 3---<NSThread: 0x60000026e100>{number = 3, name = (null)}

在异步执行 + 串行队列可以看到:

3.5 同步执行 + 主队列

同步执行 + 主队列在不同线程中调用结果也是不一样,在主线程中调用会出现死锁,而在其他线程中则不会。

3.5.1 在主线程中调用同步执行 + 主队列

互相等待卡住不可行

/**
 * 同步执行 + 主队列
 * 特点(主线程调用):互等卡主不执行。
 * 特点(其他线程调用):不会开启新线程,执行完一个任务,再执行下一个任务。
 */
- (void)syncMain {
    
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"syncMain---begin");
    
    dispatch_queue_t queue = dispatch_get_main_queue();
    
    dispatch_sync(queue, ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_sync(queue, ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_sync(queue, ^{
        // 追加任务3
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    NSLog(@"syncMain---end");
}

    输出结果
    2018-02-23 20:42:36.842892+0800 YSC-GCD-demo[20041:5030982] currentThread---<NSThread: 0x600000078a00>{number = 1, name = main}
    2018-02-23 20:42:36.843050+0800 YSC-GCD-demo[20041:5030982] syncMain---begin
    (lldb)

在同步执行 + 主队列可以惊奇的发现:

在主线程中使用同步执行 + 主队列,追加到主线程的任务1、任务2、任务3都不再执行了,而且syncMain---end也没有打印,还会报崩溃。这是为什么呢?

这是因为我们在主线程中执行syncMain方法,相当于把syncMain任务放到了主线程的队列中。而同步执行会等待当前队列中的任务执行完毕,才会接着执行。那么当我们把任务1追加到主队列中,任务1就在等待主线程处理完syncMain任务。而syncMain任务需要等待任务1执行完毕,才能接着执行。

那么,现在的情况就是syncMain任务和任务1都在等对方执行完毕。这样大家互相等待,所以就卡住了,所以我们的任务执行不了,而且syncMain---end也没有打印。

要是如果不在主线程中调用,而在其他线程中调用会如何呢?

3.5.2 在其他线程中调用同步执行 + 主队列

不会开启新线程,执行完一个任务,再执行下一个任务

// 使用 NSThread 的 detachNewThreadSelector 方法会创建线程,并自动启动线程执行
 selector 任务
[NSThread detachNewThreadSelector:@selector(syncMain) toTarget:self withObject:nil];

    输出结果:
    2018-02-23 20:44:19.377321+0800 YSC-GCD-demo[20083:5040347] currentThread---<NSThread: 0x600000272fc0>{number = 3, name = (null)}
    2018-02-23 20:44:19.377494+0800 YSC-GCD-demo[20083:5040347] syncMain---begin
    2018-02-23 20:44:21.384716+0800 YSC-GCD-demo[20083:5040132] 1---<NSThread: 0x60000006c900>{number = 1, name = main}
    2018-02-23 20:44:23.386091+0800 YSC-GCD-demo[20083:5040132] 1---<NSThread: 0x60000006c900>{number = 1, name = main}
    2018-02-23 20:44:25.387687+0800 YSC-GCD-demo[20083:5040132] 2---<NSThread: 0x60000006c900>{number = 1, name = main}
    2018-02-23 20:44:27.388648+0800 YSC-GCD-demo[20083:5040132] 2---<NSThread: 0x60000006c900>{number = 1, name = main}
    2018-02-23 20:44:29.390459+0800 YSC-GCD-demo[20083:5040132] 3---<NSThread: 0x60000006c900>{number = 1, name = main}
    2018-02-23 20:44:31.391965+0800 YSC-GCD-demo[20083:5040132] 3---<NSThread: 0x60000006c900>{number = 1, name = main}
    2018-02-23 20:44:31.392513+0800 YSC-GCD-demo[20083:5040347] syncMain---end

在其他线程中使用同步执行 + 主队列可看到:

为什么现在就不会卡住了呢?

因为syncMain任务放到了其他线程里,而任务1、任务2、任务3都在追加到主队列中,这三个任务都会在主线程中执行。syncMain 任务在其他线程中执行到追加任务1到主队列中,因为主队列现在没有正在执行的任务,所以,会直接执行主队列的任务1,等任务1执行完毕,再接着执行任务2、任务3。所以这里不会卡住线程。

3.6 异步执行 + 主队列

只在主线程中执行任务,执行完一个任务,再执行下一个任务。

/**
 * 异步执行 + 主队列
 * 特点:只在主线程中执行任务,执行完一个任务,再执行下一个任务
 */
- (void)asyncMain {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"asyncMain---begin");
    
    dispatch_queue_t queue = dispatch_get_main_queue();
    
    dispatch_async(queue, ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_async(queue, ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_async(queue, ^{
        // 追加任务3
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    NSLog(@"asyncMain---end");
}

    输出结果:
    2018-02-23 20:45:49.981505+0800 YSC-GCD-demo[20111:5046708] currentThread---<NSThread: 0x60000006d440>{number = 1, name = main}
    2018-02-23 20:45:49.981935+0800 YSC-GCD-demo[20111:5046708] asyncMain---begin
    2018-02-23 20:45:49.982352+0800 YSC-GCD-demo[20111:5046708] asyncMain---end
    2018-02-23 20:45:51.991096+0800 YSC-GCD-demo[20111:5046708] 1---<NSThread: 0x60000006d440>{number = 1, name = main}
    2018-02-23 20:45:53.991959+0800 YSC-GCD-demo[20111:5046708] 1---<NSThread: 0x60000006d440>{number = 1, name = main}
    2018-02-23 20:45:55.992937+0800 YSC-GCD-demo[20111:5046708] 2---<NSThread: 0x60000006d440>{number = 1, name = main}
    2018-02-23 20:45:57.993649+0800 YSC-GCD-demo[20111:5046708] 2---<NSThread: 0x60000006d440>{number = 1, name = main}
    2018-02-23 20:45:59.994928+0800 YSC-GCD-demo[20111:5046708] 3---<NSThread: 0x60000006d440>{number = 1, name = main}
    2018-02-23 20:46:01.995589+0800 YSC-GCD-demo[20111:5046708] 3---<NSThread: 0x60000006d440>{number = 1, name = main}

在异步执行 + 主队列可以看到:

弄懂了难理解、绕来绕去的队列+任务之后,我们来学习一个简单的东西:4. GCD 线程间的通信。

(4). GCD 线程间的通信

在iOS开发过程中,我们一般在主线程里边进行UI刷新,例如:点击、滚动、拖拽等事件。我们通常把一些耗时的操作放在其他线程,比如说图片下载、文件上传等耗时操作。而当我们有时候在其他线程完成了耗时操作时,需要回到主线程,那么就用到了线程之间的通讯。

/**
 * 线程间通信
 */
- (void)communication {
    // 获取全局并发队列
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); 
    // 获取主队列
    dispatch_queue_t mainQueue = dispatch_get_main_queue(); 
    
    dispatch_async(queue, ^{
        // 异步追加任务
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
        
        // 回到主线程
        dispatch_async(mainQueue, ^{
            // 追加在主线程中执行的任务
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        });
    });
}

    输出结果:
    2018-02-23 20:47:03.462394+0800 YSC-GCD-demo[20154:5053282] 1---<NSThread: 0x600000271940>{number = 3, name = (null)}
    2018-02-23 20:47:05.465912+0800 YSC-GCD-demo[20154:5053282] 1---<NSThread: 0x600000271940>{number = 3, name = (null)}
    2018-02-23 20:47:07.466657+0800 YSC-GCD-demo[20154:5052953] 2---<NSThread: 0x60000007bf80>{number = 1, name = main}

可以看到在其他线程中先执行任务,执行完了之后回到主线程执行主线程的相应操作。

三 、GCD 的其他方法

(1) GCD 栅栏方法:dispatch_barrier_async
/**
 * 栅栏方法 dispatch_barrier_async
 */
- (void)barrier {
    dispatch_queue_t queue = dispatch_queue_create("net.bujige.testQueue", DISPATCH_QUEUE_CONCURRENT);
    
    dispatch_async(queue, ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    dispatch_async(queue, ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_barrier_async(queue, ^{
        // 追加任务 barrier
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"barrier---%@",[NSThread currentThread]);// 打印当前线程
        }
    });
    
    dispatch_async(queue, ^{
        // 追加任务3
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    dispatch_async(queue, ^{
        // 追加任务4
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"4---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
}

    输出结果:
    2018-02-23 20:48:18.297745+0800 YSC-GCD-demo[20188:5059274] 1---<NSThread: 0x600000079d80>{number = 4, name = (null)}
    2018-02-23 20:48:18.297745+0800 YSC-GCD-demo[20188:5059273] 2---<NSThread: 0x600000079e00>{number = 3, name = (null)}
    2018-02-23 20:48:20.301139+0800 YSC-GCD-demo[20188:5059274] 1---<NSThread: 0x600000079d80>{number = 4, name = (null)}
    2018-02-23 20:48:20.301139+0800 YSC-GCD-demo[20188:5059273] 2---<NSThread: 0x600000079e00>{number = 3, name = (null)}
    2018-02-23 20:48:22.306290+0800 YSC-GCD-demo[20188:5059274] barrier---<NSThread: 0x600000079d80>{number = 4, name = (null)}
    2018-02-23 20:48:24.311655+0800 YSC-GCD-demo[20188:5059274] barrier---<NSThread: 0x600000079d80>{number = 4, name = (null)}
    2018-02-23 20:48:26.316943+0800 YSC-GCD-demo[20188:5059273] 4---<NSThread: 0x600000079e00>{number = 3, name = (null)}
    2018-02-23 20:48:26.316956+0800 YSC-GCD-demo[20188:5059274] 3---<NSThread: 0x600000079d80>{number = 4, name = (null)}
    2018-02-23 20:48:28.320660+0800 YSC-GCD-demo[20188:5059273] 4---<NSThread: 0x600000079e00>{number = 3, name = (null)}
    2018-02-23 20:48:28.320649+0800 YSC-GCD-demo[20188:5059274] 3---<NSThread: 0x600000079d80>{number = 4, name = (null)}

dispatch_barrier_async执行结果中可以看出:

在执行完栅栏前面的操作之后,才执行栅栏操作,最后再执行栅栏后边的操作。

(2) GCD 延时执行方法:dispatch_after

我们经常会遇到这样的需求:在指定时间(例如3秒)之后执行某个任务。可以用 GCD 的dispatch_after函数来实现。
需要注意的是:dispatch_after函数并不是在指定时间之后才开始执行处理,而是在指定时间之后将任务追加到主队列中。严格来说,这个时间并不是绝对准确的,但想要大致延迟执行任务,dispatch_after函数是很有效的。

/**
 * 延时执行方法 dispatch_after
 */
- (void)after {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"asyncMain---begin");
    
    dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
        // 2.0秒后异步追加任务代码到主队列,并开始执行
        NSLog(@"after---%@",[NSThread currentThread]);  // 打印当前线程
    });
}

    输出结果:
    2018-02-23 20:53:08.713784+0800 YSC-GCD-demo[20282:5080295] currentThread---<NSThread: 0x60000006ee00>{number = 1, name = main}
    2018-02-23 20:53:08.713962+0800 YSC-GCD-demo[20282:5080295] asyncMain---begin
    2018-02-23 20:53:10.714283+0800 YSC-GCD-demo[20282:5080295] after---<NSThread: 0x60000006ee00>{number = 1, name = main}


可以看出:在打印 asyncMain---begin 之后大约 2.0 秒的时间,打印了 after---<NSThread: 0x60000006ee00>{number = 1, name = main}
(3) GCD 一次性代码(只执行一次):dispatch_once

我们在创建单例、或者有整个程序运行过程中只执行一次的代码时,我们就用到了 GCD 的 dispatch_once函数。使用
dispatch_once函数能保证某段代码在程序运行过程中只被执行1次,并且即使在多线程的环境下,dispatch_once也可以保证线程安全。

/**
 * 一次性代码(只执行一次)dispatch_once
 */
- (void)once {
    static dispatch_once_t onceToken;
    dispatch_once(&onceToken, ^{
        // 只执行1次的代码(这里面默认是线程安全的)
    });
}
(4) GCD 快速迭代方法:dispatch_apply

通常我们会用 for 循环遍历,但是 GCD 给我们提供了快速迭代的函数dispatch_applydispatch_apply按照指定的次数将指定的任务追加到指定的队列中,并等待全部队列执行结束。

如果是在串行队列中使用 dispatch_apply,那么就和for循环一样,按顺序同步执行。可这样就体现不出快速迭代的意义了。
我们可以利用并发队列进行异步执行。比如说遍历 0~5 这6个数字,for 循环的做法是每次取出一个元素,逐个遍历。dispatch_apply可以 在多个线程中同时(异步)遍历多个数字。
还有一点,无论是在串行队列,还是异步队列中,dispatch_apply都会等待全部任务执行完毕,这点就像是同步操作,也像是队列组中的dispatch_group_wait方法。

/**
 * 快速迭代方法 dispatch_apply
 */
- (void)apply {
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    
    NSLog(@"apply---begin");
    dispatch_apply(6, queue, ^(size_t index) {
        NSLog(@"%zd---%@",index, [NSThread currentThread]);
    });
    NSLog(@"apply---end");
}

    输出结果:
    2018-02-23 22:03:18.475499+0800 YSC-GCD-demo[20470:5176805] apply---begin
    2018-02-23 22:03:18.476672+0800 YSC-GCD-demo[20470:5177035] 1---<NSThread: 0x60000027b8c0>{number = 3, name = (null)}
    2018-02-23 22:03:18.476693+0800 YSC-GCD-demo[20470:5176805] 0---<NSThread: 0x604000070640>{number = 1, name = main}
    2018-02-23 22:03:18.476704+0800 YSC-GCD-demo[20470:5177037] 2---<NSThread: 0x604000276800>{number = 4, name = (null)}
    2018-02-23 22:03:18.476735+0800 YSC-GCD-demo[20470:5177036] 3---<NSThread: 0x60000027b800>{number = 5, name = (null)}
    2018-02-23 22:03:18.476867+0800 YSC-GCD-demo[20470:5177035] 4---<NSThread: 0x60000027b8c0>{number = 3, name = (null)}
    2018-02-23 22:03:18.476867+0800 YSC-GCD-demo[20470:5176805] 5---<NSThread: 0x604000070640>{number = 1, name = main}
    2018-02-23 22:03:18.477038+0800 YSC-GCD-demo[20470:5176805] apply---end

因为是在并发队列中异步执行任务,所以各个任务的执行时间长短不定,最后结束顺序也不定。但是apply---end一定在最后执行。这是因为dispatch_apply函数会等待全部任务执行完毕。

(5) GCD 队列组:dispatch_group

有时候我们会有这样的需求:分别异步执行2个耗时任务,然后当2个耗时任务都执行完毕后再回到主线程执行任务。这时候我们可以用到 GCD 的队列组。

调用队列组的dispatch_group_async 先把任务放到队列中,然后将队列放入队列组中。或者使用队列组的 dispatch_group_enterdispatch_group_leave组合 来实现dispatch_group_async
调用队列组的dispatch_group_notify 回到指定线程执行任务。或者使用 dispatch_group_wait回到当前线程继续向下执行(会阻塞当前线程)。

(5.1) dispatch_group_notify
监听group 中任务的完成状态,当所有的任务都执行完成后,追加任务到 group中,并执行任务。

/**
 * 队列组 dispatch_group_notify
 */
- (void)groupNotify {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"group---begin");
    
    dispatch_group_t group =  dispatch_group_create();
    
    dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_group_notify(group, dispatch_get_main_queue(), ^{
        // 等前面的异步任务1、任务2都执行完毕后,回到主线程执行下边任务
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
        }
        NSLog(@"group---end");
    });
}

    输出结果:
    2018-02-23 22:05:03.790035+0800 YSC-GCD-demo[20494:5183349] currentThread---<NSThread: 0x604000072040>{number = 1, name = main}
    2018-02-23 22:05:03.790237+0800 YSC-GCD-demo[20494:5183349] group---begin
    2018-02-23 22:05:05.792721+0800 YSC-GCD-demo[20494:5183654] 1---<NSThread: 0x60000026f280>{number = 4, name = (null)}
    2018-02-23 22:05:05.792725+0800 YSC-GCD-demo[20494:5183656] 2---<NSThread: 0x60000026f240>{number = 3, name = (null)}
    2018-02-23 22:05:07.797408+0800 YSC-GCD-demo[20494:5183656] 2---<NSThread: 0x60000026f240>{number = 3, name = (null)}
    2018-02-23 22:05:07.797408+0800 YSC-GCD-demo[20494:5183654] 1---<NSThread: 0x60000026f280>{number = 4, name = (null)}
    2018-02-23 22:05:09.798717+0800 YSC-GCD-demo[20494:5183349] 3---<NSThread: 0x604000072040>{number = 1, name = main}
    2018-02-23 22:05:11.799827+0800 YSC-GCD-demo[20494:5183349] 3---<NSThread: 0x604000072040>{number = 1, name = main}
    2018-02-23 22:05:11.799977+0800 YSC-GCD-demo[20494:5183349] group---end

dispatch_group_notify相关代码运行输出结果可以看出:
当所有任务都执行完成之后,才执行dispatch_group_notify block中的任务。

(5.2) dispatch_group_wait
暂停当前线程(阻塞当前线程),等待指定的 group 中的任务执行完成后,才会往下继续执行。

/**
 * 队列组 dispatch_group_wait
 */
- (void)groupWait {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"group---begin");
    
    dispatch_group_t group =  dispatch_group_create();
    
    dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    // 等待上面的任务全部完成后,会往下继续执行(会阻塞当前线程)
    dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
    
    NSLog(@"group---end");
}

    输出结果:
    2018-02-23 22:10:16.939258+0800 YSC-GCD-demo[20538:5198871] currentThread---<NSThread: 0x600000066780>{number = 1, name = main}
    2018-02-23 22:10:16.939455+0800 YSC-GCD-demo[20538:5198871] group---begin
    2018-02-23 22:10:18.943862+0800 YSC-GCD-demo[20538:5199137] 2---<NSThread: 0x600000464b80>{number = 4, name = (null)}
    2018-02-23 22:10:18.943861+0800 YSC-GCD-demo[20538:5199138] 1---<NSThread: 0x604000076640>{number = 3, name = (null)}
    2018-02-23 22:10:20.947787+0800 YSC-GCD-demo[20538:5199137] 2---<NSThread: 0x600000464b80>{number = 4, name = (null)}
    2018-02-23 22:10:20.947790+0800 YSC-GCD-demo[20538:5199138] 1---<NSThread: 0x604000076640>{number = 3, name = (null)}
    2018-02-23 22:10:20.948134+0800 YSC-GCD-demo[20538:5198871] group---end

dispatch_group_wait相关代码运行输出结果可以看出:
当所有任务执行完成之后,才执行 dispatch_group_wait 之后的操作。但是,使用dispatch_group_wait会阻塞当前线程。

(5.3) dispatch_group_enterdispatch_group_leave

-dispatch_group_enter标志着一个任务追加到 group,执行一次,相当于group 中未执行完毕任务数+1
-dispatch_group_leave标志着一个任务离开了 group,执行一次,相当于 group 中未执行完毕任务数-1。

/**
 * 队列组 dispatch_group_enter、dispatch_group_leave
 */
- (void)groupEnterAndLeave
{
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"group---begin");
    
    dispatch_group_t group = dispatch_group_create();
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    dispatch_group_enter(group);
    dispatch_async(queue, ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
        dispatch_group_leave(group);
    });
    
    dispatch_group_enter(group);
    dispatch_async(queue, ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
        dispatch_group_leave(group);
    });
    
    dispatch_group_notify(group, dispatch_get_main_queue(), ^{
        // 等前面的异步操作都执行完毕后,回到主线程.
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
        }
        NSLog(@"group---end");
    });
    
//    // 等待上面的任务全部完成后,会往下继续执行(会阻塞当前线程)
//    dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
//
//    NSLog(@"group---end");
}

    输出结果:
    2018-02-23 22:14:17.997667+0800 YSC-GCD-demo[20592:5214830] currentThread---<NSThread: 0x604000066600>{number = 1, name = main}
    2018-02-23 22:14:17.997839+0800 YSC-GCD-demo[20592:5214830] group---begin
    2018-02-23 22:14:20.000298+0800 YSC-GCD-demo[20592:5215094] 1---<NSThread: 0x600000277c80>{number = 4, name = (null)}
    2018-02-23 22:14:20.000305+0800 YSC-GCD-demo[20592:5215095] 2---<NSThread: 0x600000277c40>{number = 3, name = (null)}
    2018-02-23 22:14:22.001323+0800 YSC-GCD-demo[20592:5215094] 1---<NSThread: 0x600000277c80>{number = 4, name = (null)}
    2018-02-23 22:14:22.001339+0800 YSC-GCD-demo[20592:5215095] 2---<NSThread: 0x600000277c40>{number = 3, name = (null)}
    2018-02-23 22:14:24.002321+0800 YSC-GCD-demo[20592:5214830] 3---<NSThread: 0x604000066600>{number = 1, name = main}
    2018-02-23 22:14:26.002852+0800 YSC-GCD-demo[20592:5214830] 3---<NSThread: 0x604000066600>{number = 1, name = main}
    2018-02-23 22:14:26.003116+0800 YSC-GCD-demo[20592:5214830] group---end

dispatch_group_enterdispatch_group_leave相关代码运行结果中可以看出:当所有任务执行完成之后,才执行 dispatch_group_notify中的任务。这里的dispatch_group_enterdispatch_group_leave组合,其实等同于dispatch_group_async

(6) GCD 信号量:dispatch_semaphore

GCD中的信号量是指Dispatch Semaphore,是持有计数信号。类似于过高速路收费站的栏杆。可以通过时,打开栏杆,不可以通过时,关闭栏杆。在 Dispatch Semaphore 中,使用计数来完成这个功能,计数为0时等待,不可通过。计数为1或大于1时,计数减1且不等待,可通过。
Dispatch Semaphore 提供了三个函数。

注意:信号量的使用前提是:想清楚你需要处理哪个线程等待(阻塞),又要哪个线程继续执行,然后使用信号量。

Dispatch Semaphore在实际开发中主要用于:

(6.1) Dispatch Semaphore 线程同步
我们在开发中,会遇到这样的需求:异步执行耗时任务,并使用异步执行的结果进行一些额外的操作。换句话说,相当于,将将异步执行任务转换为同步执行任务。比如说:AFNetworkingAFURLSessionManager.m 里面的tasksForKeyPath:方法。通过引入信号量的方式,等待异步执行任务结果,获取到tasks,然后再返回该tasks

- (NSArray *)tasksForKeyPath:(NSString *)keyPath {
    __block NSArray *tasks = nil;
    dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
    [self.session getTasksWithCompletionHandler:^(NSArray *dataTasks, NSArray *uploadTasks, NSArray *downloadTasks) {
        if ([keyPath isEqualToString:NSStringFromSelector(@selector(dataTasks))]) {
            tasks = dataTasks;
        } else if ([keyPath isEqualToString:NSStringFromSelector(@selector(uploadTasks))]) {
            tasks = uploadTasks;
        } else if ([keyPath isEqualToString:NSStringFromSelector(@selector(downloadTasks))]) {
            tasks = downloadTasks;
        } else if ([keyPath isEqualToString:NSStringFromSelector(@selector(tasks))]) {
            tasks = [@[dataTasks, uploadTasks, downloadTasks] valueForKeyPath:@"@unionOfArrays.self"];
        }

        dispatch_semaphore_signal(semaphore);
    }];

    dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);

    return tasks;
}

下面,我们来利用Dispatch Semaphore实现线程同步,将异步执行任务转换为同步执行任务。

/**
 * semaphore 线程同步
 */
- (void)semaphoreSync {
    
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"semaphore---begin");
    
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
    
    __block int number = 0;
    dispatch_async(queue, ^{
        // 追加任务1
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        
        number = 100;
        
        dispatch_semaphore_signal(semaphore);
    });
    
    dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
    NSLog(@"semaphore---end,number = %zd",number);
}

    输出结果:
    2018-02-23 22:22:26.521665+0800 YSC-GCD-demo[20642:5246341] currentThread---<NSThread: 0x60400006bc80>{number = 1, name = main}
    2018-02-23 22:22:26.521869+0800 YSC-GCD-demo[20642:5246341] semaphore---begin
    2018-02-23 22:22:28.526841+0800 YSC-GCD-demo[20642:5246638] 1---<NSThread: 0x600000272300>{number = 3, name = (null)}
    2018-02-23 22:22:28.527030+0800 YSC-GCD-demo[20642:5246341] semaphore---end,number = 100

Dispatch Semaphore 实现线程同步的代码可以看到:

(6.2) Dispatch Semaphore 线程安全和线程同步(为线程加锁)
线程安全:如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码。如果每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。

若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行写操作(更改变量),一般都需要考虑线程同步,否则的话就可能影响线程安全。

线程同步:可理解为线程 A 和 线程 B 一块配合,A 执行到一定程度时要依靠线程 B 的某个结果,于是停下来,示意 B 运行;B 依言执行,再将结果给 A;A 再继续操作。

举个简单例子就是:两个人在一起聊天。两个人不能同时说话,避免听不清(操作冲突)。等一个人说完(一个线程结束操作),另一个再说(另一个线程再开始操作)。

下面,我们模拟火车票售卖的方式,实现NSThread 线程安全和解决线程同步问题。

场景:总共有50张火车票,有两个售卖火车票的窗口,一个是北京火车票售卖窗口,另一个是上海火车票售卖窗口。两个窗口同时售卖火车票,卖完为止。

(6.2.1) 非线程安全(不使用 semaphore)
先来看看不考虑线程安全的代码:

/**
 * 非线程安全:不使用 semaphore
 * 初始化火车票数量、卖票窗口(非线程安全)、并开始卖票
 */
- (void)initTicketStatusNotSave {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"semaphore---begin");
    
    self.ticketSurplusCount = 50;
    
    // queue1 代表北京火车票售卖窗口
    dispatch_queue_t queue1 = dispatch_queue_create("net.bujige.testQueue1", DISPATCH_QUEUE_SERIAL);
    // queue2 代表上海火车票售卖窗口
    dispatch_queue_t queue2 = dispatch_queue_create("net.bujige.testQueue2", DISPATCH_QUEUE_SERIAL);
    
    __weak typeof(self) weakSelf = self;
    dispatch_async(queue1, ^{
        [weakSelf saleTicketNotSafe];
    });
    
    dispatch_async(queue2, ^{
        [weakSelf saleTicketNotSafe];
    });
}

/**
 * 售卖火车票(非线程安全)
 */
- (void)saleTicketNotSafe {
    while (1) {
        
        if (self.ticketSurplusCount > 0) {  //如果还有票,继续售卖
            self.ticketSurplusCount--;
            NSLog(@"%@", [NSString stringWithFormat:@"剩余票数:%d 窗口:%@", self.ticketSurplusCount, [NSThread currentThread]]);
            [NSThread sleepForTimeInterval:0.2];
        } else { //如果已卖完,关闭售票窗口
            NSLog(@"所有火车票均已售完");
            break;
        }
        
    }
}

    输出结果(部分):
    2018-02-23 22:25:35.789072+0800 YSC-GCD-demo[20712:5258914] currentThread---<NSThread: 0x604000068880>{number = 1, name = main}
    2018-02-23 22:25:35.789260+0800 YSC-GCD-demo[20712:5258914] semaphore---begin
    2018-02-23 22:25:35.789641+0800 YSC-GCD-demo[20712:5259176] 剩余票数:48 窗口:<NSThread: 0x60000027db80>{number = 3, name = (null)}
    2018-02-23 22:25:35.789646+0800 YSC-GCD-demo[20712:5259175] 剩余票数:49 窗口:<NSThread: 0x60000027e740>{number = 4, name = (null)}
    2018-02-23 22:25:35.994113+0800 YSC-GCD-demo[20712:5259175] 剩余票数:47 窗口:<NSThread: 0x60000027e740>{number = 4, name = (null)}
    2018-02-23 22:25:35.994129+0800 YSC-GCD-demo[20712:5259176] 剩余票数:46 窗口:<NSThread: 0x60000027db80>{number = 3, name = (null)}
    2018-02-23 22:25:36.198993+0800 YSC-GCD-demo[20712:5259176] 剩余票数:45 窗口:<NSThread: 0x60000027db80>{number = 3, name = (null)}
    ...

可以看到在不考虑线程安全,不使用 semaphore的情况下,得到票数是错乱的,这样显然不符合我们的需求,所以我们需要考虑线程安全问题。

(6.2.1) 线程安全(使用 semaphore 加锁)

考虑线程安全的代码:

/**
 * 线程安全:使用 semaphore 加锁
 * 初始化火车票数量、卖票窗口(线程安全)、并开始卖票
 */
- (void)initTicketStatusSave {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"semaphore---begin");
    
    semaphoreLock = dispatch_semaphore_create(1);
    
    self.ticketSurplusCount = 50;
    
    // queue1 代表北京火车票售卖窗口
    dispatch_queue_t queue1 = dispatch_queue_create("net.bujige.testQueue1", DISPATCH_QUEUE_SERIAL);
    // queue2 代表上海火车票售卖窗口
    dispatch_queue_t queue2 = dispatch_queue_create("net.bujige.testQueue2", DISPATCH_QUEUE_SERIAL);
    
    __weak typeof(self) weakSelf = self;
    dispatch_async(queue1, ^{
        [weakSelf saleTicketSafe];
    });
    
    dispatch_async(queue2, ^{
        [weakSelf saleTicketSafe];
    });
}

/**
 * 售卖火车票(线程安全)
 */
- (void)saleTicketSafe {
    while (1) {
        // 相当于加锁
        dispatch_semaphore_wait(semaphoreLock, DISPATCH_TIME_FOREVER);
        
        if (self.ticketSurplusCount > 0) {  //如果还有票,继续售卖
            self.ticketSurplusCount--;
            NSLog(@"%@", [NSString stringWithFormat:@"剩余票数:%d 窗口:%@", self.ticketSurplusCount, [NSThread currentThread]]);
            [NSThread sleepForTimeInterval:0.2];
        } else { //如果已卖完,关闭售票窗口
            NSLog(@"所有火车票均已售完");
            
            // 相当于解锁
            dispatch_semaphore_signal(semaphoreLock);
            break;
        }
        
        // 相当于解锁
        dispatch_semaphore_signal(semaphoreLock);
    }
}

    输出结果为:
    2018-02-23 22:32:19.814232+0800 YSC-GCD-demo[20862:5290531] currentThread---<NSThread: 0x6000000783c0>{number = 1, name = main}
    2018-02-23 22:32:19.814412+0800 YSC-GCD-demo[20862:5290531] semaphore---begin
    2018-02-23 22:32:19.814837+0800 YSC-GCD-demo[20862:5290687] 剩余票数:49 窗口:<NSThread: 0x6040002709c0>{number = 3, name = (null)}
    2018-02-23 22:32:20.017745+0800 YSC-GCD-demo[20862:5290689] 剩余票数:48 窗口:<NSThread: 0x60000046c640>{number = 4, name = (null)}
    2018-02-23 22:32:20.222039+0800 YSC-GCD-demo[20862:5290687] 剩余票数:47 窗口:<NSThread: 0x6040002709c0>{number = 3, name = (null)}
    ...
    2018-02-23 22:32:29.024817+0800 YSC-GCD-demo[20862:5290689] 剩余票数:4 窗口:<NSThread: 0x60000046c640>{number = 4, name = (null)}
    2018-02-23 22:32:29.230110+0800 YSC-GCD-demo[20862:5290687] 剩余票数:3 窗口:<NSThread: 0x6040002709c0>{number = 3, name = (null)}
    2018-02-23 22:32:29.433615+0800 YSC-GCD-demo[20862:5290689] 剩余票数:2 窗口:<NSThread: 0x60000046c640>{number = 4, name = (null)}
    2018-02-23 22:32:29.637572+0800 YSC-GCD-demo[20862:5290687] 剩余票数:1 窗口:<NSThread: 0x6040002709c0>{number = 3, name = (null)}
    2018-02-23 22:32:29.840234+0800 YSC-GCD-demo[20862:5290689] 剩余票数:0 窗口:<NSThread: 0x60000046c640>{number = 4, name = (null)}
    2018-02-23 22:32:30.044960+0800 YSC-GCD-demo[20862:5290687] 所有火车票均已售完
    2018-02-23 22:32:30.045260+0800 YSC-GCD-demo[20862:5290689] 所有火车票均已售完

可以看出,在考虑了线程安全的情况下,使用 dispatch_semaphore机制之后,得到的票数是正确的,没有出现混乱的情况。我们也就解决了多个线程同步的问题。

四 、总结

GCD是我们使用最多的多线程手段 ,关于GCD的使用教程,大多千篇一律。

接下来,我们就开始探索GCD的底层源码探索,让我们更加深入的去了解GCD。

上一篇 下一篇

猜你喜欢

热点阅读