110. Balanced Binary Tree 平衡二叉树

2019-05-08  本文已影响0人  xingzai

题目链接
tag:

question:
  Given a binary tree, determine if it is height-balanced.

For this problem, a height-balanced binary tree is defined as:

a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Example 1:

Given the following tree [3,9,20,null,null,15,7]:
3
/ \
9 20
/ \
15 7
Return true.

Example 2:

Given the following tree [1,2,2,3,3,null,null,4,4]:
1
/ \
2 2
/ \
3 3
/ \
4 4
Return false.

思路:
  求二叉树是否平衡,根据题目中的定义,高度平衡二叉树是每一个结点的两个子树的深度差不能超过1,那么我们肯定需要一个求各个点深度的函数,然后对每个节点的两个子树来比较深度差,时间复杂度为O(nlg(n)),代码如下:

C++ 解法一:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    bool isBalanced(TreeNode *root) {
        if (!root) 
            return true;
        if (abs(getDepth(root->left) - getDepth(root->right)) > 1) 
            return false;
        return isBalanced(root->left) && isBalanced(root->right);    
    }
    int getDepth(TreeNode *root) {
        if (!root) 
            return 0;
        return 1 + max(getDepth(root->left), getDepth(root->right));
    }
};

  上面那个方法不是很高效,因为每一个点都会被上面的点计算深度时访问一次,我们可以进行优化。方法是如果我们发现子树不平衡,则不计算具体的深度,而是直接返回-1。那么优化后的方法为:对于每一个节点,我们通过checkDepth方法递归获得左右子树的深度,如果子树是平衡的,则返回真实的深度,若不平衡,直接返回-1,此方法时间复杂度O(N),空间复杂度O(H),参见代码如下:

C++ 解法二:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:    
    bool isBalanced(TreeNode *root) {
        if (checkDepth(root) == -1) 
            return false;
        else 
            return true;
    }
    int checkDepth(TreeNode *root) {
        if (!root) 
            return 0;
        int left = checkDepth(root->left);
        if (left == -1) 
            return -1;
        int right = checkDepth(root->right);
        if (right == -1) 
            return -1;
        int diff = abs(left - right);
        if (diff > 1) 
            return -1;
        else 
            return 1 + max(left, right);
    }
};
上一篇下一篇

猜你喜欢

热点阅读